27 research outputs found

    IAFSS Working Group on Measurement and Computation of Fire Phenomena

    Full text link

    Development of High Fidelity Soot Aerosol Dynamics Models using Method of Moments with Interpolative Closure

    Get PDF
    The method of moments with interpolative closure (MOMIC) for soot formation and growth provides a detailed modeling framework maintaining a good balance in generality, accuracy, robustness, and computational efficiency. This study presents several computational issues in the development and implementation of the MOMIC-based soot modeling for direct numerical simulations (DNS). The issues of concern include a wide dynamic range of numbers, choice of normalization, high effective Schmidt number of soot particles, and realizability of the soot particle size distribution function (PSDF). These problems are not unique to DNS, but they are often exacerbated by the high-order numerical schemes used in DNS. Four specific issues are discussed in this article: the treatment of soot diffusion, choice of interpolation scheme for MOMIC, an approach to deal with strongly oxidizing environments, and realizability of the PSDF. General, robust, and stable approaches are sought to address these issues, minimizing the use of ad hoc treatments such as clipping. The solutions proposed and demonstrated here are being applied to generate new physical insight into complex turbulence-chemistry-soot-radiation interactions in turbulent reacting flows using DNS

    Direct numerical simulation of turbulent counterflow nonpremixed flames

    Full text link
    This paper presents our recent progress in terascale three-dimensional simulations of turbulent nonpremixed flames in the presence of a mean flow strain and fine water droplets. Under the ongoing university collaborative project supported by the DOE SciDAC Program [1] along with the INCITE 2007 Project [2], the study aims at bringing the state-of-the-art high-fidelity simulation capability to the next level by incorporating various advanced physical models for soot formation, radiative heat transfer, and lagrangian spray dynamics, to an unprecedented degree of detail in high-fidelity simulation application. The targeted science issue is fundamental characteristics of flame suppression by the complex interaction between turbulence, chemistry, radiation, and water spray. The high quality simulation data with full consideration of multi-physics processes will allow fundamental understanding of the key physical and chemical mechanisms in the flame quenching behavior. In this paper, recent efforts on numerical algorithms and model development toward the targeted terascale 3D simulations are discussed and some preliminary results are presented.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/58180/2/jpconf7_78_012029.pd

    Direct Numerical Simulations of Non-premixed ethylene–Air Flames: Local Flame Extinction Criterion

    Get PDF
    Direct Numerical Simulations (DNS) of ethylene/air diffusion flame extinctions in decaying two-dimensional turbulence were performed. A Damköhler-number-based flame extinction criterion as provided by classical large activation energy asymptotic (AEA) theory is assessed for its validity in predicting flame extinction and compared to one based on Chemical Explosive Mode Analysis (CEMA) of the detailed chemistry. The DNS code solves compressible flow conservation equations using high order finite difference and explicit time integration schemes. The ethylene/air chemistry is simulated with a reduced mechanism that is generated based on the directed relation graph (DRG) based methods along with stiffness removal. The numerical configuration is an ethylene fuel strip embedded in ambient air and exposed to a prescribed decaying turbulent flow field. The emphasis of this study is on the several flame extinction events observed in contrived parametric simulations. A modified viscosity and changing pressure (MVCP) scheme was adopted in order to artificially manipulate the probability of flame extinction. Using MVCP, pressure was changed from the baseline case of 1 atm to 0.1 and 10 atm. In the high pressure MVCP case, the simulated flame is extinction-free, whereas in the low pressure MVCP case, the simulated flame features frequent extinction events and is close to global extinction. Results show that, despite its relative simplicity and provided that the global flame activation temperature is correctly calibrated, the AEA-based flame extinction criterion can accurately predict the simulated flame extinction events. It is also found that the AEA-based criterion provides predictions of flame extinction that are consistent with those provided by a CEMA-based criterion. This study supports the validity of a simple Damköhler-number-based criterion to predict flame extinction in engineering-level CFD models

    Interaction of turbulence, chemistry, and radiation in strained nonpremixed flames

    Full text link
    This paper provides an overview of recent progress in our development of highfidelity simulation of turbulent combustion with detailed chemistry. In particular, two major accomplishments are presented and discussed: (a) As for the computational aspects, it was recognized that many existing techniques to treat inflow and outflow boundary conditions for compressible flow simulations suffered from spurious errors when applied to highly turbulent reacting flow problems. Upon careful examination, the sources of these problems have been identified and an improved characteristic boundary condition strategy has been developed. The new method has been applied to various test problems, thereby demonstrating that the improved boundary conditions can successfully reproduce complex combustion events in a finite domain size with desired accuracy and stability. (b) As a science application, more advanced physical models for soot formation and radiative heat transfer have been developed in order to provide fundamental understanding of the interaction among turbulence, chemistry and radiation. We have performed several parametric simulations of two-dimensional ethyleneair nonpremixed counterflow flames interacting with counter-rotating vortex pairs and injected turbulent flows to investigate transient dynamics of soot formation process. Detailed analysis on the transient characteristics of soot behavior is discussed.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/49003/2/jpconf5_16_011.pd

    IAFSS agenda 2030 for a fire safe world

    Get PDF
    The International Association of Fire Safety Science (IAFSS) is comprised of members from some 40 countries. This paper presents the Association's thinking, developed by the Management Committee, concerning pressing research needs for the coming 10 years presented as the IAFSS Agenda 2030 for a Fire Safe World. The research needs are couched in terms of two broad Societal Grand Challenges: (1) climate change, resiliency and sustainability and (2) population growth, urbanization and globalization. The two Societal Grand Challenges include significant fire safety components, that lead both individually and collectively to the need for a number of fire safety and engineering research activities and actions. The IAFSS has identified a list of areas of research and actions in response to these challenges. The list is not exhaustive, and actions within actions could be defined, but this paper does not attempt to cover all future needs

    Front shape similarity measure for data-driven simulations of wildland fire spread based on state estimation: Application to the RxCADRE field-scale experiment

    Get PDF
    Data-driven wildfire spread modeling is emerging as a cornerstone for forecasting real-time fire behavior using thermal-infrared imaging data. One key challenge in data assimilation lies in the design of an adequate measure to represent the discrepancies between observed and simulated firelines (or "fronts"). A first approach consists in adopting a Lagrangian description of the flame front and in computing a Euclidean distance between simulated and observed fronts by pairing each observed marker with its closest neighbor along the simulated front. However, this front marker registration approach is difficult to generalize to complex front topology that can occur when fire propagation conditions are highly heterogeneous due to topography, biomass fuel and micrometeorology. To overcome this issue, we investigate in this paper an object-oriented approach derived from the Chan-Vese contour fitting functional used in image processing. The burning area is treated as a moving object that can undergo shape deformations and topological changes. We combine this non-Euclidean measure with a state estimation approach (a Luenberger observer) to perform simulations of the time-evolving fire front location driven by discrete observations of the fireline. We apply this object-oriented data assimilation method to the three-hectare RxCADRE S5 field-scale experiment. We demonstrate that this method provides more accurate forecast of fireline propagation than if either the fire spread model or the observations were taken separately. Results show that when the observation frequency becomes lower than 1/60 s −1 , the forecast performance of data assimilation is improved compared to simply extrapolating observation data. This highlights the need of a physics-based forward model to forecast flame front propagation. We also demonstrate that the front shape similarity measure is suitable for both Eulerian and Lagrangian-type front-tracking solvers and thereby can provide a unified framework to track moving structures such as flame front position and topology in combustion problems
    corecore