1,954 research outputs found

    Disc atmospheres and winds in X-ray binaries

    Get PDF
    We review the current status of studies of disc atmospheres and winds in low mass X-ray binaries. We discuss the possible wind launching mechanisms and compare the predictions of the models with the existent observations. We conclude that a combination of thermal and radiative pressure (the latter being relevant at high luminosities) can explain the current observations of atmospheres and winds in both neutron star and black hole binaries. Moreover, these winds and atmospheres could contribute significantly to the broad iron emission line observed in these systems.Comment: Accepted for publication in Acta Polytechnica. Invited review talk at the Vulcano Workshop 2012: "Frontier Objects in Astrophysics and Particle Physics

    Consultancy report on the current situation of AGRONATURA and FUNDACIAT

    Get PDF
    Summary of a review of the implementation of Agronatura and FUNDACIAT

    A highly-ionized absorber as a new explanation for the spectral changes during dips from X-ray binaries

    Full text link
    Until now, the spectral changes observed from persistent to dipping intervals in dipping low-mass X-ray binaries were explained by invoking progressive and partial covering of an extended emission region. Here, we propose a novel and simpler way to explain these spectral changes, which does not require any partial covering and hence any extended corona, and further has the advantage of explaining self-consistently the spectral changes both in the continuum and the narrow absorption lines that are now revealed by XMM-Newton. In 4U 1323-62, we detect Fe XXV and Fe XXVI absorption lines and model them for the first time by including a complete photo-ionized absorber model rather than individual Gaussian profiles. We demonstrate that the spectral changes both in the continuum and the lines can be simply modeled by variations in the properties of the ionized absorber. From persistent to dipping the photo-ionization parameter decreases while the equivalent hydrogen column density of the ionized absorber increases. In a recent work (see Diaz Trigo et al. in these proceedings), we show that our new approach can be successfully applied to all the other dipping sources that have been observed by XMM-Newton.Comment: 5 pages, 5 figures, to appear in the proceedings of "The X-ray Universe 2005", San Lorenzo de El Escorial (Spain), 26-30 September 200

    The ERP System for an Effective Management of a Small Software Company – Requirements Analysis

    Get PDF
    As found out by a questionnaire survey a significant part of small software companies is not satisfied with the way their company processes are supported by software systems. To change this situation it is necessary first to specify requirements for such software systems in small software companies. Based on the analysis of the literature and the market and own experience the first version of the ERP system requirements specification for small software companies was framed and subsequently validated by interviewing the executives of the target group companies

    The 2011 October Draconids Outburst. II. Meteoroid Chemical Abundances from Fireball Spectroscopy

    Get PDF
    On October 8, 2011 the Earth crossed dust trails ejected from comet 21P/Giacobini-Zinner in the late 19th and early 20th Century. This gave rise to an outburst in the activity of the October Draconid meteor shower, and an international team was organized to analyze this event. The SPanish Meteor Network (SPMN) joined this initiative and recorded the October Draconids by means of low light level CCD cameras. In addition, spectroscopic observations were carried out. Tens of multi-station meteor trails were recorded, including an extraordinarily bright October Draconid fireball (absolute mag. -10.5) that was simultaneously imaged from three SPMN meteor ob-serving stations located in Andalusia. Its spectrum was obtained, showing a clear evolution in the relative intensity of emission lines as the fireball penetrated deeper into the atmosphere. Here we focus on the analysis of this remarkable spectrum, but also discuss the atmospheric trajectory, atmospheric penetration, and orbital data computed for this bolide which was probably released during 21P/Giacobini-Zinner return to perihelion in 1907. The spectrum is discussed together with the tensile strength for the October Draconid meteoroids. The chemical profile evolution of the main rocky elements for this extremely bright bolide is compared with the elemental abundances obtained for 5 October Draconid fireballs also recorded during our spectroscopic campaign but observed only at a single station. Significant chemical heterogeneity between the small meteoroids is found as we should expect for cometary aggregates being formed by diverse dust components.Comment: Manuscript in press in Monthly Notices of the Royal Astronomical Society. Accepted for publication in MNRAS on April 28th, 2013 Manuscript Pages: 28 Tables: 5 Figures: 12. Manuscript associated: "The 2011 October Draconids outburst. I. Orbital elements, meteoroid fluxes and 21P/Giacobini-Zinner delivered mass to Earth" by Trigo-Rodriguez et al. is also in press in the same journa

    Variations in the dip properties of the low-mass X-ray binary XB 1254-69 observed with XMM-Newton and INTEGRAL

    Get PDF
    We have analysed data from five XMM-Newton observations of XB 1254-69, one of them simultaneous with INTEGRAL, to investigate the mechanism responsible for the highly variable dips durations and depths seen from this low-mass X-ray binary. Deep dips were present during two observations, shallow dips during one and no dips were detected during the remaining two observations. At high (1-4 s) time resolution ``shallow dips'' are seen to include a few, very rapid, deep dips whilst the ``deep'' dips consist of many similar very rapid, deep, fluctuations. The folded V-band Optical Monitor light curves obtained when the source was undergoing deep, shallow and no detectable dipping exhibit sinusoid-like variations with different amplitudes and phases. We fit EPIC spectra obtained from "persistent" or dip-free intervals with a model consisting of disc-blackbody and thermal comptonisation components together with Gaussian emission features at 1 and 6.6 keV modified by absorption due to cold and photo-ionised material. None of the spectral parameters appears to be strongly correlated with the dip depth except for the temperature of the disc blackbody which is coolest (kT ~ 1.8 keV) when deep dips are present and warmest (kT ~ 2.1 keV) when no dips are detectable. We propose that the changes in both disc temperature and optical modulation could be explained by the presence of a tilted accretion disc in the system. We provide a revised estimate of the orbital period of 0.16388875 +/- 0.00000017 day.Comment: 16 pages, 10 figures, 4 tables. Accepted for publication in A&
    corecore