100 research outputs found
Krill Excretion Boosts Microbial Activity in the Southern Ocean
Antarctic krill are known to release large amounts of inorganic and organic nutrients to the water column. Here we test the role of krill excretion of dissolved products in stimulating heterotrophic bacteria on the basis of three experiments where ammonium and organic excretory products released by krill were added to bacterial assemblages, free of grazers. Our results demonstrate that the addition of krill excretion products (but not of ammonium alone), at levels expected in krill swarms, greatly stimulates bacteria resulting in an order-of-magnitude increase in growth and production. Furthermore, they suggest that bacterial growth rate in the Southern Ocean is suppressed well below their potential by resource limitation. Enhanced bacterial activity in the presence of krill, which are major sources of DOC in the Southern Ocean, would further increase recycling processes associated with krill activity, resulting in highly efficient krill-bacterial recycling that should be conducive to stimulating periods of high primary productivity in the Southern Ocean.This research is a contribution to projects ICEPOS (REN2002-04165-CO3-O2) and ATOS (POL2006-00550/CTM), funded by the Spanish Ministry of Science and Innovation
Novel Crystalline SiO2 Nanoparticles via Annelids Bioprocessing of Agro-Industrial Wastes
The synthesis of nanoparticles silica oxide from rice husk, sugar cane bagasse and coffee husk, by employing vermicompost with annelids (Eisenia foetida) is reported. The product (humus) is calcinated and extracted to recover the crystalline nanoparticles. X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM) and dynamic light scattering (DLS) show that the biotransformation allows creating specific crystalline phases, since equivalent particles synthesized without biotransformation are bigger and with different crystalline structure
Seasonal dynamics of active SAR11 ecotypes in the oligotrophic Northwest Mediterranean Sea
A seven-year oceanographic time series in NW Mediterranean surface waters was combined with pyrosequencing of ribosomal RNA (16S rRNA) and ribosomal RNA gene copies (16S rDNA) to examine the environmental controls on SAR11 ecotype dynamics and potential activity. SAR11 diversity exhibited pronounced seasonal cycles remarkably similar to total bacterial diversity. The timing of diversity maxima was similar across narrow and broad phylogenetic clades and strongly associated with deep winter mixing. Diversity minima were associated with periods of stratification that were low in nutrients and phytoplankton biomass and characterised by intense phosphate limitation (turnover time80%) by SAR11 Ia. A partial least squares (PLS) regression model was developed that could reliably predict sequence abundances of SAR11 ecotypes (Q2=0.70) from measured environmental variables, of which mixed layer depth was quantitatively the most important. Comparison of clade-level SAR11 rRNA:rDNA signals with leucine incorporation enabled us to partially validate the use of these ratios as an in-situ activity measure. However, temporal trends in the activity of SAR11 ecotypes and their relationship to environmental variables were unclear. The strong and predictable temporal patterns observed in SAR11 sequence abundance was not linked to metabolic activity of different ecotypes at the phylogenetic and temporal resolution of our study
A new vision of ocean biogeochemistry after a decade of the Joint Global Ocean Flux Study (JGOFS)
The Joint Global Ocean Flux Study (JGOFS) has completed a decade of intensive process and time-series studies on the regional and temporal dynamics of biogeochemical processes in five diverse ocean basins. Its field program also included a global survey of dissolved inorganic carbon (DIC) in the ocean, including estimates of the exchange of carbon dioxide (CO2) between the ocean and the atmosphere, in cooperation with the World Ocean Circulation Experiment (WOCE).
This report describes the principal achievements of JGOFS in ocean observations, technology development and modelling. The study has produced a comprehensive and high-quality database of measurements of ocean biogeochemical properties. Data on temporal and spatial changes in primary production and CO2 exchange, the dynamics of of marine food webs, and the availability of micronutrients have yielded new insights into what governs ocean productivity, carbon cycling and export into the deep ocean, the set of processes collectively known as the "biological pump."
With large-scale, high-quality data sets for the partial pressure of CO2 in surface waters as well for other DIC parameters in the ocean and trace gases in the atmosphere, reliable estimates, maps and simulations of air-sea gas flux, anthropogenic carbon and inorganic carbon export are now available. JGOFS scientists have also obtained new insights into the export flux of particulate and dissolved organic carbon (POC and DOG), the variations that occur in the ratio of elements in organic matter, and the utilization and remineralization of organic matter as it falls through the ocean interior to the sediments.
JGOFS scientists have amassed long-term data on temporal variability in the exchange of CO2 between the ocean and atmosphere, ecosystem dynamics, and carbon export in the oligotrophic subtropical gyres. They have documented strong links between these variables and large-scale climate patterns such as the El Nino-Southern Oscillation (ENSO) or the North Atlantic Oscillation (NAO). An increase in the abundance of organisms that fix free nitrogen (N-2) and a shift in nutrient limitation from nitrogen to phosphorus in the subtropical North Pacific provide evidence of the effects of a decade of strong El Ninos on ecosystem structure and nutrient dynamics.
High-quality data sets, including ocean-color observations from satellites, have helped modellers make great strides in their ability to simulate the biogeochemical and physical constraints on the ocean carbon cycle and to extend their results from the local to the regional and global scales. Ocean carbon-cycle models, when coupled to atmospheric and terrestrial models, will make it possible in the future to predict ways in which land and ocean ecosystems might respond to changes in climate
Some environmental factors influencing phytoplankton in the Southern Ocean around South Georgia
Data on phytoplankton and zooplankton biomass, and physical and chemical variables, are combined with a published multivariate description of diatom species composition to interpret variation within an area around South Georgia surveyed during an austral summer. Large-scale species distributions could be equated to the different water masses which reflected the interaction of the Antarctic Circumpolar Current with the island and the Scotia Ridge. Small-scale factors were found to act at an interstation scale and imposed local variation on the biogeographic pattern. Nutrient depletion could be related to phytoplankton biomass but no single inorganic nutrient of those measured (NO 3 −N, PO 4 −P and silica) could be identified as important. The ratio Si:P appeared to be more important as an ecological factor. The impact of grazing by krill and other zooplankton could only be resolved as differences in phytoplankton biomass and phaeopigment content. Diatom species composition showed a relation to local krill abundance very different from that suggested by published studies, but could be explained as the effect of earlier grazing outside the study area. The effects of vertical mixing could not account for interstation differences as pycnocline depth was uniformly greater than euphotic depth, and vertical stability very low. Some comparison was made with data collected in 1926–31 by the Discovery Investigations. Significant differences in the distribution of certain taxa such as Chaetoceros criophilum and C. socialis were traced to major differences in hydrology.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46983/1/300_2004_Article_BF00443379.pd
JMJD8 Regulates Angiogenic Sprouting and Cellular Metabolism by Interacting With Pyruvate Kinase M2 in Endothelial Cells
Objective-Jumonji C (JmjC) domain-containing proteins modify histone and nonhistone proteins thereby controlling cellular functions. However, the role of JmjC proteins in angiogenesis is largely unknown. Here, we characterize the expression of JmjC domain-containing proteins after inducing endothelial differentiation of murine embryonic stem cells and study the function of JmjC domain-only proteins in endothelial cell (EC) functions. Approach and Results-We identified a large number of JmjC domain-containing proteins regulated by endothelial differentiation of murine embryonic stem cells. Among the family of JmjC domain-only proteins, Jmjd8 was significantly upregulated on endothelial differentiation. Knockdown of Jmjd8 in ECs significantly decreased in vitro network formation and sprouting in the spheroid assay. JMJD8 is exclusively detectable in the cytoplasm, excluding a function as a histone-modifying enzyme. Mass spectrometry analysis revealed JMJD8-interacting proteins with known functions in cellular metabolism like pyruvate kinase M2. Accordingly, knockdown of pyruvate kinase M2 in human umbilical vein ECs decreased endothelial sprouting in the spheroid assay. Knockdown of JMJD8 caused a reduction of EC metabolism as measured by Seahorse Bioscience extracellular flux analysis. Conversely, overexpression of JMJD8 enhanced cellular oxygen consumption rate of ECs, reflecting an increased mitochondrial respiration. Conclusions-Jmjd8 is upregulated during endothelial differentiation and regulates endothelial sprouting and metabolism by interacting with pyruvate kinase M2
La compétitivité des filières animales françaises
Depuis le début des années 2000, les produits d’origine animale français ont vu leur part de marché à l’international quasiment divisée par deux, passant de 9 % des exportations mondiales en 2000 à 5 % en 2016. Même au sein du marché de l’Union européenne, la France ne maintient pas ses positions. Dans le même temps, certains États membres de l’UE ont connu des trajectoires opposées. Le projet de recherche « COMPANI », piloté par l'UMR SMART-LERECO (INRA), vise à identifier et analyser les facteurs à même d’expliquer ces évolutions
- …