74 research outputs found

    A Step Toward High Temperature Intelligent Power Modules Using 1.5kV SiC-BJT

    Get PDF
    International audienceLooking back to the development of inverters using SiC switches, it appears that SiC devices do not behave like their silicon counterparts. Their ability to operate at high temperature makes them attractive. Developing drivers suitable for 200˚C operation is not straightforward. In a perspective of high integration and large power density, it is wise to consider a monolithic integration of the driver parts for the sake of reliability. Silicon is not suitable for high ambient temperature; silicon-on-insulator offers better performances and presents industrial perspectives. The paper focuses on a SiC BJT driver: it processes logical orders from outside, drives adequately the BJT to turn it either on or off, monitors the turn-off and turn-on state of the device, and acts accordingly to prevent failure. SiC BJT imposes specific performances different from the well known ones of SiC JFET or MOSFET. The paper addresses a preliminary analysis of a SOI driver, anticipating the behavior of SiC-BJT and the change in behavior at high temperature. A discret driver as been design and fabricated. Elementary functionnal blocks have been validated, and a BJT conveter successfully operated at high temperature with high efficiency (η = 88%)

    Silicon Carbide Controlled Current Limiter, Current Limitation Strategies, Foreseen Applications and Benefits

    Get PDF
    International audienceThe expansion of electricity networks (distribution of energy, telecommunication), strongly contributed to increase the risks of appearance of defects, such as surge or overload. This multiplicity and complexity of electric networks, the need to have reliable systems favoured the development of serial protection devices. Fuse solution allows an efficient and total protection but requires to replace an element in case of failure. Therefore, other solutions have been investigated. Complex systems have been developed, all based on serial compensation, such as supra-conductor material, GTO MOV combination ... Indeed, because of the strong energy appearance during a short circuit, it is necessary to limit and to dissipate the energy of the short circuit, under high bias. This constraint leads to a feasibility study of a current limiter in 4H silicon carbide (4H-SiC). A VJFET structure was retained focusing on a nominal current of IN = 1 A and a nominal voltage of VN = 690 V. The device was optimised, taking into account SiC excellent physical properties. The VJFET was designed checking the trade-off between a low on-resistance value, high voltage capability and the highest gate transconductance value. A first batch of component was made, validating the bi-directional limitation function in both current and voltage mode, (VMAX = 970 V). The efficiency of the protection was validated, demonstrating the capacity of a component to react very quickly (t < 1 µs). Using such a device is very suitable in several applications (protection against short circuit, transient over current…) as it will allow to reduce transient phenomena and thus increase the efficiency and lifetime of the whole system

    Role of Cell-to-Cell Variability in Activating a Positive Feedback Antiviral Response in Human Dendritic Cells

    Get PDF
    In the first few hours following Newcastle disease viral infection of human monocyte-derived dendritic cells, the induction of IFNB1 is extremely low and the secreted type I interferon response is below the limits of ELISA assay. However, many interferon-induced genes are activated at this time, for example DDX58 (RIGI), which in response to viral RNA induces IFNB1. We investigated whether the early induction of IFNBI in only a small percentage of infected cells leads to low level IFN secretion that then induces IFN-responsive genes in all cells. We developed an agent-based mathematical model to explore the IFNBI and DDX58 temporal dynamics. Simulations showed that a small number of early responder cells provide a mechanism for efficient and controlled activation of the DDX58-IFNBI positive feedback loop. The model predicted distributions of single cell responses that were confirmed by single cell mRNA measurements. The results suggest that large cell-to-cell variation plays an important role in the early innate immune response, and that the variability is essential for the efficient activation of the IFNB1 based feedback loop

    Insights into the role of the berry-specific ethylene responsive factor VviERF045

    Get PDF
    During grape ripening, numerous transcriptional and metabolic changes are required in order to obtain colored, sweet, and flavored berries. There is evidence that ethylene, together with other signals, plays an important role in triggering the onset of ripening. Here, we report the functional characterization of a berry-specific Ethylene Responsive Factor (ERF), VviERF045, which is induced just before véraison and peaks at ripening. Phylogenetic analysis revealed it is close to the SHINE clade of ERFs, factors involved in the regulation of wax biosynthesis and cuticle morphology. Transgenic grapevines lines overexpressing VviERF045 were obtained, in vitro propagated, phenotypically characterized, and analyzed for the content of specific classes of metabolites. The effect of VviERF045 was correlated with the level of transgene expression, with highexpressing lines showing stunted growth, discolored and smaller leaves, and a lower level of chlorophylls and carotenoids. One line with intermediate expression, L15, was characterized at the transcriptomic level and showed 573 differentially expressed genes compared to wild type plants. Microscopy and gene expression analyses point toward a major role of VviERF045 in epidermis patterning by acting on waxes and cuticle. They also indicate that VviERF045 affects phenolic secondary metabolism and induces a reaction resembling a plant immune response with modulation of receptor likekinases and pathogen related genes. These results suggest also a possible role of this transcription factor in berry ripening, likely related to changes in epidermis and cuticle of the berry, cell expansion, a decrease in photosynthetic capacity, and the activation of several defense related genes as well as from the phenylpropanoid metabolism. All these processes occur in the berry during ripening.CL was supported by the Marie Curie FP7-PEOPLE-2011-CIG action program- [Graperipe project n. 303907]. Network activities have been supported by COST1106 action.Leida, C.; Dal Rì, A.; Dalla Costa, L.; Gómez Jiménez, MD.; Pompili, V.; Sonego, P.; Engelen, K.... (2016). Insights into the role of the berry-specific ethylene responsive factor VviERF045. Frontiers in Plant Science. 7(1793):1-17. https://doi.org/10.3389/fpls.2016.01793S1177179

    Specific Heat of Nearly Magnetic Centers in Pd:Ni Alloys

    No full text
    International audienc

    SiC BJT driver applied to a 2 kW inverter: Performances and limitations

    No full text
    International audienceThe control of a SiC bipolar transistor may look like the control of its Si counterpart, but not quite in fact. This paper presents a discrete base driver for a SiC bipolar transistor and validates its performances in ambient temperature while the SiC BJT is operated at high temperature. Performances and limitations of a 2 kW SiC-BJT based inverter are investigated

    Distortion improvement in the current coil of loudspeakers

    No full text
    International audienceThis paper deals with the comparison of voltage and current driving units in an active audio system. The effect of the audio amplifier control on the current coil of an electrodynamic loudspeaker is presented. In voltage control topology, the electromagnetic force linked to coil current is controlled through the load impedance. Thus, the electromechanical conversion linearity is decreased by the impedance variation, which implies a reduction of the overall audio quality. A current driving method could reduce the effect of the non-linear impedance by controlling the coil current directly, thereby the acceleration. Large signal impedance modeling is given in this paper to underline the non-linear effects of electrodynamic loudspeaker parameters on the coupling. As a result, the practical comparison of voltage and current driven methods proves that the current control reduces the voice coil current distortions in the three different loudspeakers under test
    • …
    corecore