5,534 research outputs found

    Charge transport and recombination of dye sensitized 1D nanostructured-TiO2 films prepared by reactive sputtering

    Get PDF
    Dye sensitized solar cells (DSCs) are governed by light absorption, charge injection, electron transport and recombination and electrolyte diffusion. One way to improve the efficiency of these devices is by the design of highly ordered nanostructured semiconductor materials.The advantages can be two-fold: Firstly charge transport within the metal-oxide can be enhanced and hence thicker films can be employed and secondly, the complete permeation with a solid-state hole-transport medium of the sensitized metal-oxide can be facilitated. Nanostructured materials should promote vectorial electron diffusion and have as few recombination sights as possible so as to further enhance electron lifetimes and electron collection efficiencies. These materials should also have a high surface area so as to allow for efficient dye-loading and hence light absorption. Highly ordered TiO2 nanostructured films were prepared by reactive sputtering and their charge transport characteristics evaluated in DSCs. These were compared to DSCs employing mesoporous TiO2 films prepared by doctor blade technique using commercial paste. Charge transport characteristics were evaluated by impedance spectroscopy (IS), incident photon to current conversion efficiencies (IPCE) and current-voltage (iV) curves under simulated AM1.5G irradiation. Film morphology and structural properties were evaluated by scanning electron microscopy (SEM) and X-ray diffraction (XRD), respectively

    First-Principles Study on Peierls Instability in Infinite Single-Row Al Wires

    Full text link
    We present the relation between the atomic and spin-electronic structures of infinite single-row atomic wires made of Al atoms during their elongation using first-principles molecular-dynamics simulations. Our study reveals that the Peierls transition indeed occurs in the wire with magnetic ordering: it ruptures to form a trimerized structure with antiferromagnetic ordering and changes from a conductor to an insulator just before forming a linear wire of equally-spaced atoms. The formation of the trimerized wire is discussed in terms of the behavior of the σ\sigma-symmetry bands of the Al wire.Comment: 10 pages, 4 figure

    Medicago truncatula and Glomus intraradices gene expression in cortical cells harboring arbuscules in the arbuscular mycorrhizal symbiosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Most vascular flowering plants have the capacity to form symbiotic associations with arbuscular mycorrhizal (AM) fungi. The symbiosis develops in the roots where AM fungi colonize the root cortex and form arbuscules within the cortical cells. Arbuscules are enveloped in a novel plant membrane and their establishment requires the coordinated cellular activities of both symbiotic partners. The arbuscule-cortical cell interface is the primary functional interface of the symbiosis and is of central importance in nutrient exchange. To determine the molecular events the underlie arbuscule development and function, it is first necessary to identify genes that may play a role in this process. Toward this goal we used the Affymetrix GeneChip<sup>® </sup>Medicago Genome Array to document the <it>M. truncatula </it>transcript profiles associated with AM symbiosis, and then developed laser microdissection (LM) of <it>M. truncatula </it>root cortical cells to enable analyses of gene expression in individual cell types by RT-PCR.</p> <p>Results</p> <p>This approach led to the identification of novel <it>M. truncatula </it>and <it>G. intraradices </it>genes expressed in colonized cortical cells and in arbuscules. Within the arbuscule, expression of genes associated with the urea cycle, amino acid biosynthesis and cellular autophagy was detected. Analysis of gene expression in the colonized cortical cell revealed up-regulation of a lysine motif (LysM)-receptor like kinase, members of the GRAS transcription factor family and a symbiosis-specific ammonium transporter that is a likely candidate for mediating ammonium transport in the AM symbiosis.</p> <p>Conclusion</p> <p>Transcript profiling using the Affymetrix GeneChip<sup>® </sup>Medicago Genome Array provided new insights into gene expression in <it>M. truncatula </it>roots during AM symbiosis and revealed the existence of several <it>G. intraradices </it>genes on the <it>M. truncatula </it>GeneChip<sup>®</sup>. A laser microdissection protocol that incorporates low-melting temperature Steedman's wax, was developed to enable laser microdissection of <it>M. truncatula </it>root cortical cells. LM coupled with RT-PCR provided spatial gene expression information for both symbionts and expanded current information available for gene expression in cortical cells containing arbuscules.</p

    Mechanical properties and formation mechanisms of a wire of single gold atoms

    Get PDF
    A scanning tunneling microscope (STM) supplemented with a force sensor is used to study the mechanical properties of a novel metallic nanostructure: a freely suspended chain of single gold atoms. We find that the bond strength of the nanowire is about twice that of a bulk metallic bond. We perform ab initio calculations of the force at chain fracture and compare quantitatively with experimental measurements. The observed mechanical failure and nanoelastic processes involved during atomic wire fabrication are investigated using molecular dynamics (MD) simulations, and we find that the total effective stiffness of the nanostructure is strongly affected by the detailed local atomic arrangement at the chain bases.Comment: To be published in Phys. Rev. Lett. 4 pages with 3 figure

    Widespread Wolbachia infection in an insular radiation of damselflies (Odonata, Coenagrionidae)

    Get PDF
    Wolbachia is one of the most common endosymbionts found infecting arthropods. Theory predicts symbionts like Wolbachia will be more common in species radiations, as host shift events occur with greatest frequency between closely related species. Further, the presence of Wolbachia itself may engender reproductive isolation, and promote speciation of their hosts. Here we screened 178 individuals belonging to 30 species of the damselfly genera Nesobasis and Melanesobasis — species radiations endemic to the Fiji archipelago in the South Pacific — for Wolbachia, using multilocus sequence typing to characterize bacterial strains. Incidence of Wolbachia was 71% in Nesobasis and 40% in Melanesobasis, and prevalence was also high, with an average of 88% in the Nesobasis species screened. We identified a total of 25 Wolbachia strains, belonging to supergroups A, B and F, with some epidemic strains present in multiple species. The occurrence of Wolbachia in both males and females, and the similar global prevalence found in both sexes rules out any strong effect of Wolbachia on the primary sex-ratio, but are compatible with the phenotype of cytoplasmic incompatibility. Nesobasis has higher species richness than most endemic island damselfly genera, and we discuss the potential for endosymbiont-mediated speciation within this group.Ministerio de Ciencia e Innovación | Ref. CGL2008-02799Ministerio de Economía y Competitividad | Ref. CGL2014-53140-

    Clasificación del estado nutricional

    Full text link

    Underestimated role of legume roots for soil N fertility

    Get PDF
    Research ArticleNitrogen (N) is a major fertilizing element for plants. The distribution of N in legumes is influencing the efficiency of the next crop. Nitrogen storage in legumes is actually estimated by N fixation in shoots, whereas there is little knowledge on the contribution of roots and nodules to legume N and soil N. Here, we studied the contribution of roots and nodules of grain and pasture legumes to plant N and soil N in Mediterranean fields. Experiments were run under rainfed conditions for a 2-year period in three regions of Portugal. Entire plants including top plant and visible roots and nodules were sampled at the end of the growing seasons for grain legumes, sweet and yellow lupine, and over two harvests in case of pastures. N2 fixation was measured for grain legumes and pasture legumes using 15N tracing. Our results show that aboveground N concentration did not vary among legumes, but differed in the belowground tissues. Field studies show that 7–11%of total legume N was associated with roots and nodules. Data also show an allocation of 11– 14 kg N fixed t−1 belowground dry matter in indeterminate legumes, which represents half the amount of total aboveground plant. This finding demonstrates that investigation relying only on shoot Nunderestimates the role of legumes for soil N fertilityinfo:eu-repo/semantics/publishedVersio

    Magnetic phenomena in 5d transition metal nanowires

    Full text link
    We have carried out fully relativistic full-potential, spin-polarized, all-electron density-functional calculations for straight, monatomic nanowires of the 5d transition and noble metals Os, Ir, Pt and Au. We find that, of these metal nanowires, Os and Pt have mean-field magnetic moments for values of the bond length at equilibrium. In the case of Au and Ir, the wires need to be slightly stretched in order to spin polarize. An analysis of the band structures of the wires indicate that the superparamagnetic state that our calculations suggest will affect the conductance through the wires -- though not by a large amount -- at least in the absence of magnetic domain walls. It should thus lead to a characteristic temperature- and field dependent conductance, and may also cause a significant spin polarization of the transmitted current.Comment: 7 pages, 5 figure

    Common Origin for Surface Reconstruction and the Formation of Chains of Metal Atoms

    Get PDF
    During the fracture of nanocontacts gold spontaneously forms freely suspended chains of atoms, which is not observed for the iso-electronic noble metals Ag and Cu. Au also differs from Ag and Cu in forming reconstructions at its low-index surfaces. Using mechanically controllable break junctions we show that all the 5d metals that show similar reconstructions (Ir, Pt and Au) also form chains of atoms, while both properties are absent in the 4d neighbor elements (Rh, Pd, Ag), indicating a common origin for these two phenomena. A competition between s and d bonding is proposed as an explanation

    First bounds on the high-energy emission from isolated Wolf-Rayet binary systems

    Get PDF
    High-energy gamma-ray emission is theoretically expected to arise in tight binary star systems (with high mass loss and high velocity winds), although the evidence of this relationship has proven to be elusive so far. Here we present the first bounds on this putative emission from isolated Wolf-Rayet (WR) star binaries, WR 147 and WR 146, obtained from observations with the MAGIC telescope.Comment: (Authors are the MAGIC Collaboration.) Manuscript in press at The Astrophysical Journal Letter
    corecore