1,073 research outputs found
Forecast, observation and modelling of a deep stratospheric intrusion event over Europe
A wide range of measurements was carried out in central and southeastern Europe within the framework of the EU-project STACCATO (Influence of Stratosphere-Troposphere Exchange in a Changing Climate on Atmospheric Transport and Oxidation Capacity) with the principle goal to create a comprehensive data set on stratospheric air intrusions into the troposphere along a rather frequently observed pathway over central Europe from the North Sea to the Mediterranean Sea. The measurements were based on predictions by suitable quasi-operational trajectory calculations using ECMWF forecast data. A predicted deep Stratosphere to Troposphere Transport (STT) event, encountered during the STACCATO period on 20-21 June 2001, could be followed by the measurements network almost from its inception. Observations provide evidence that the intrusion affected large parts of central and southeastern Europe. Especially, the ozone lidar observations on 20-21 June 2001 at Garmisch-Partenkirchen, Germany captured the evolution of two marked tongues of high ozone with the first one reaching almost a height of 2 km, thus providing an excellent data set for model intercomparisons and validation. In addition, for the first time to our knowledge concurrent measurements of the cosmogenic radionuclides <sup>10</sup>Be and <sup>7</sup>Be and their ratio <sup>10</sup>Be/<sup>7</sup>Be are presented together as stratospheric tracers in a case study of a stratospheric intrusion. The ozone tracer columns calculated with the FLEXPART model were found to be in good agreement with water vapour satellite images, capturing the evolution of the observed dry streamers of stratospheric origin. Furthermore, the time-height cross section of ozone tracer simulated with FLEXPART over Garmisch-Partenkirchen captures with many details the evolution of the two observed high-ozone filaments measured with the IFU lidar, thus demonstrating the considerable progress in model simulations. Finally, the modelled ozone (operationally available since October 1999) from the ECMWF (European Centre for Medium-Range Weather Forecasts) atmospheric model is shown to be in very good agreement with the observations during this case study, which provides the first successful validation of a chemical tracer that is used operationally in a weather forecast model. This suggests that coupling chemistry and weather forecast models may significantly improve both weather and chemical forecasts in the future
A Large Catalog of Homogeneous Ultra-Violet/Optical GRB Afterglows: Temporal and Spectral Evolution
We present the second Swift Ultra-Violet/Optical Telescope (UVOT) gamma-ray
burst (GRB) afterglow catalog, greatly expanding on the first Swift UVOT GRB
afterglow catalog. The second catalog is constructed from a database containing
over 120,000 independent UVOT observations of 538 GRBs first detected by Swift,
the High Energy Transient Explorer 2 (HETE2), the INTErnational Gamma-Ray
Astrophysics Laboratory (INTEGRAL), the Interplanetary Network (IPN), Fermi,
and Astro-rivelatore Gamma a Immagini Leggero (AGILE). The catalog covers GRBs
discovered from 2005 Jan 17 to 2010 Dec 25. Using photometric information in
three UV bands, three optical bands, and a `white' or open filter, the data are
optimally co-added to maximize the number of detections and normalized to one
band to provide a detailed light curve. The catalog provides positional,
temporal, and photometric information for each burst, as well as Swift Burst
Alert Telescope (BAT) and X-Ray Telescope (XRT) GRB parameters. Temporal slopes
are provided for each UVOT filter. The temporal slope per filter of almost half
the GRBs are fit with a single power-law, but one to three breaks are required
in the remaining bursts. Morphological comparisons with the X-ray reveal that
approximately 75% of the UVOT light curves are similar to one of the four
morphologies identified by Evans et al. (2009). The remaining approximately 25%
have a newly identified morphology. For many bursts, redshift and extinction
corrected UV/optical spectral slopes are also provided at 2000, 20,000, and
200,000 seconds.Comment: 44 pages, 14 figures, to be published in Astrophysical Journal
Supplementa
Mitogenomes reveal two major influxes of Papuan ancestry across Wallacea following the last glacial maximum and Austronesian contact
The tropical archipelago of Wallacea contains thousands of individual islands interspersed between mainland Asia and Near Oceania, and marks the location of a series of ancient oceanic voyages leading to the peopling of Sahul—i.e., the former continent that joined Australia and New Guinea at a time of lowered sea level—by 50,000 years ago. Despite the apparent deep antiquity of human presence in Wallacea, prior population history research in this region has been hampered by patchy archaeological and genetic records and is largely concentrated upon more recent history that follows the arrival of Austronesian seafarers ~3000–4000 years ago (3–4 ka). To shed light on the deeper history of Wallacea and its connections with New Guinea and Australia, we performed phylogeographic analyses on 656 whole mitogenomes from these three regions, including 186 new samples from eight Wallacean islands and three West Papuan populations. Our results point to a surprisingly dynamic population history in Wallacea, marked by two periods of extensive demographic change concentrated around the Last Glacial Maximum ~15 ka and post-Austronesian contact ~3 ka. These changes appear to have greatly diminished genetic signals informative about the original peopling of Sahul, and have important implications for our current understanding of the population history of the region.1. Introduction 2. Materials and Methods 2.1. Sample Collection and Ethics 2.2. Mitochondrial Sequence Generation 2.3. Combined Wallacea–Sahul Dataset 2.4. Phylogenetic Parameter Estimation 2.5. Using Ancestral Node Dates from Geographically Exclusive Clades to Infer Demographic History 2.6. Migration Model Inference and Testing 2.7. Simulating and Estimating the Timing of Migration Events 3. Results 3.1. Summary of New Mitochondrial Haplogroups from Wallacea and West Papua 3.2. Phylogeographic Analyses 4. Discussion 4.1. Post-LGM Population Expansions and Movements 4.2. Redistribution of Papuan mtDNA Lineages Following Austronesian Contact 4.3. Comparison with Wallacean Archaeological and Linguistic Records 5. Conclusion
West Nile Virus Infections Projected from Blood Donor Screening Data, United States, 2003
Routine donor nucleic acid amplification testing is a valuable surveillance screening tool
The Affective Impact of Financial Skewness on Neural Activity and Choice
Few finance theories consider the influence of “skewness” (or large and asymmetric but unlikely outcomes) on financial choice. We investigated the impact of skewed gambles on subjects' neural activity, self-reported affective responses, and subsequent preferences using functional magnetic resonance imaging (FMRI). Neurally, skewed gambles elicited more anterior insula activation than symmetric gambles equated for expected value and variance, and positively skewed gambles also specifically elicited more nucleus accumbens (NAcc) activation than negatively skewed gambles. Affectively, positively skewed gambles elicited more positive arousal and negatively skewed gambles elicited more negative arousal than symmetric gambles equated for expected value and variance. Subjects also preferred positively skewed gambles more, but negatively skewed gambles less than symmetric gambles of equal expected value. Individual differences in both NAcc activity and positive arousal predicted preferences for positively skewed gambles. These findings support an anticipatory affect account in which statistical properties of gambles—including skewness—can influence neural activity, affective responses, and ultimately, choice
Designing visual analytics methods for massive collections of movement data
Exploration and analysis of large data sets cannot be carried out using purely visual means but require the involvement of database technologies, computerized data processing, and computational analysis methods. An appropriate combination of these technologies and methods with visualization may facilitate synergetic work of computer and human whereby the unique capabilities of each “partner” can be utilized. We suggest a systematic approach to defining what methods and techniques, and what ways of linking them, can appropriately support such a work. The main idea is that software tools prepare and visualize the data so that the human analyst can detect various types of patterns by looking at the visual displays. To facilitate the detection of patterns, we must understand what types of patterns may exist in the data (or, more exactly, in the underlying phenomenon). This study focuses on data describing movements of multiple discrete entities that change their positions in space while preserving their integrity and identity. We define the possible types of patterns in such movement data on the basis of an abstract model of the data as a mathematical function that maps entities and times onto spatial positions. Then, we look for data transformations, computations, and visualization techniques that can facilitate the detection of these types of patterns and are suitable for very large data sets – possibly too large for a computer's memory. Under such constraints, visualization is applied to data that have previously been aggregated and generalized by means of database operations and/or computational techniques
FACT -- The G-APD revolution in Cherenkov astronomy
Since two years, the FACT telescope is operating on the Canary Island of La
Palma. Apart from its purpose to serve as a monitoring facility for the
brightest TeV blazars, it was built as a major step to establish solid state
photon counters as detectors in Cherenkov astronomy. The camera of the First
G-APD Cherenkov Telesope comprises 1440 Geiger-mode avalanche photo diodes
(G-APD), equipped with solid light guides to increase the effective light
collection area of each sensor. Since no sense-line is available, a special
challenge is to keep the applied voltage stable although the current drawn by
the G-APD depends on the flux of night-sky background photons significantly
varying with ambient light conditions. Methods have been developed to keep the
temperature and voltage dependent response of the G-APDs stable during
operation. As a cross-check, dark count spectra with high statistics have been
taken under different environmental conditions. In this presentation, the
project, the developed methods and the experience from two years of operation
of the first G-APD based camera in Cherenkov astronomy under changing
environmental conditions will be presented.Comment: Proceedings of the Nuclear Science Symposium and Medical Imaging
Conference (IEEE-NSS/MIC), 201
FACT - The First G-APD Cherenkov Telescope: Status and Results
The First G-APD Cherenkov telescope (FACT) is the first telescope using
silicon photon detectors (G-APD aka. SiPM). It is built on the mount of the
HEGRA CT3 telescope, still located at the Observatorio del Roque de los
Muchachos, and it is successfully in operation since Oct. 2011. The use of
Silicon devices promises a higher photon detection efficiency, more robustness
and higher precision than photo-multiplier tubes. The FACT collaboration is
investigating with which precision these devices can be operated on the
long-term. Currently, the telescope is successfully operated from remote and
robotic operation is under development. During the past months of operation,
the foreseen monitoring program of the brightest known TeV blazars has been
carried out, and first physics results have been obtained including a strong
flare of Mrk501. An instantaneous flare alert system is already in a testing
phase. This presentation will give an overview of the project and summarize its
goals, status and first results
Convergent evolution of conserved mitochondrial pathways underlies repeated adaptation to extreme environments
Extreme environments test the limits of life; yet, some organisms thrive in harsh conditions. Extremophile lineages inspire questions about how organisms can tolerate physiochemical stressors and whether the repeated colonization of extreme environments is facilitated by predictable and repeatable evolutionary innovations. We identified the mechanistic basis underlying convergent evolution of tolerance to hydrogen sulfide (H2S)-a toxicant that impairs mitochondrial function-across evolutionarily independent lineages of a fish (Poecilia mexicana, Poeciliidae) from H2S-rich springs. Using comparative biochemical and physiological analyses, we found that mitochondrial function is maintained in the presence of H2S in sulfide spring P. mexicana but not ancestral lineages from nonsulfidic habitats due to convergent adaptations in the primary toxicity target and a major detoxification enzyme. Genome-wide local ancestry analyses indicated that convergent evolution of increased H2S tolerance in different populations is likely caused by a combination of selection on standing genetic variation and de novo mutations. On a macroevolutionary scale, H2S tolerance in 10 independent lineages of sulfide spring fishes across multiple genera of Poeciliidae is correlated with the convergent modification and expression changes in genes associated with H2S toxicity and detoxification. Our results demonstrate that the modification of highly conserved physiological pathways associated with essential mitochondrial processes mediates tolerance to physiochemical stress. In addition, the same pathways, genes, and-in some instances-codons are implicated in H2S adaptation in lineages that span 40 million years of evolution
- …