430 research outputs found

    Imprints of the quasar structure in time-delay light curves: Microlensing-aided reverberation mapping

    Full text link
    Owing to the advent of large area photometric surveys, the possibility to use broad band photometric data, instead of spectra, to measure the size of the broad line region of active galactic nuclei, has raised a large interest. We describe here a new method using time-delay lensed quasars where one or several images are affected by microlensing due to stars in the lensing galaxy. Because microlensing decreases (or increases) the flux of the continuum compared to the broad line region, it changes the contrast between these two emission components. We show that this effect can be used to effectively disentangle the intrinsic variability of those two regions, offering the opportunity to perform reverberation mapping based on single band photometric data. Based on simulated light curves generated using a damped random walk model of quasar variability, we show that measurement of the size of the broad line region can be achieved using this method, provided one spectrum has been obtained independently during the monitoring. This method is complementary to photometric reverberation mapping and could also be extended to multi-band data. Because the effect described above produces a variability pattern in difference light curves between pairs of lensed images which is correlated with the time-lagged continuum variability, it can potentially produce systematic errors in measurement of time delays between pairs of lensed images. Simple simulations indicate that time-delay measurement techniques which use a sufficiently flexible model for the extrinsic variability are not affected by this effect and produce accurate time delays.Comment: Accepted for publication in Astronomy and Astrophysic

    Firedec: a two-channel finite-resolution image deconvolution algorithm

    Full text link
    We present a two-channel deconvolution method that decomposes images into a parametric point-source channel and a pixelized extended-source channel. Based on the central idea of the deconvolution algorithm proposed by Magain, Courbin & Sohy (1998), the method aims at improving the resolution of the data rather than at completely removing the point spread function (PSF). Improvements over the original method include a better regularization of the pixel channel of the image, based on wavelet filtering and multiscale analysis, and a better controlled separation of the point source vs. the extended source. In addition, the method is able to simultaneously deconvolve many individual frames of the same object taken with different instruments under different PSF conditions. For this purpose, we introduce a general geometric transformation between individual images. This transformation allows the combination of the images without having to interpolate them. We illustrate the capability of our algorithm using real and simulated images with complex diffraction-limited PSF.Comment: Accepted in A&A. An application of the technique to real data is available in Cantale et al. http://arxiv.org/abs/1601.05192v

    COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses XV. Assessing the achievability and precision of time-delay measurements

    Full text link
    COSMOGRAIL is a long-term photometric monitoring of gravitationally lensed QSOs aimed at implementing Refsdal's time-delay method to measure cosmological parameters, in particular H0. Given long and well sampled light curves of strongly lensed QSOs, time-delay measurements require numerical techniques whose quality must be assessed. To this end, and also in view of future monitoring programs or surveys such as the LSST, a blind signal processing competition named Time Delay Challenge 1 (TDC1) was held in 2014. The aim of the present paper, which is based on the simulated light curves from the TDC1, is double. First, we test the performance of the time-delay measurement techniques currently used in COSMOGRAIL. Second, we analyse the quantity and quality of the harvest of time delays obtained from the TDC1 simulations. To achieve these goals, we first discover time delays through a careful inspection of the light curves via a dedicated visual interface. Our measurement algorithms can then be applied to the data in an automated way. We show that our techniques have no significant biases, and yield adequate uncertainty estimates resulting in reduced chi2 values between 0.5 and 1.0. We provide estimates for the number and precision of time-delay measurements that can be expected from future time-delay monitoring campaigns as a function of the photometric signal-to-noise ratio and of the true time delay. We make our blind measurements on the TDC1 data publicly availableComment: 11 pages, 8 figures, published in Astronomy & Astrophysic

    First case of strong gravitational lensing by a QSO : SDSS J0013+1523 at z = 0.120

    Get PDF
    We present the first case of strong gravitational lensing by a QSO : SDSS J0013+1523, at z = 0.120. The discovery is the result of a systematic search for emission lines redshifted behind QSOs, among 22298 spectra of the SDSS data release 7. Apart from the z = 0.120 spectral features of the foreground QSO, the spectrum of SDSS J0013+1523 also displays the OII and Hbeta emission lines and the OIII doublet, all at the same redshift, z = 0.640. Using sharp Keck adaptive optics K-band images obtained using laser guide stars, we unveil two objects within a radius of 2 arcsec from the QSO. Deep Keck optical spectroscopy clearly confirms one of these objects at z = 0.640 and shows traces of the OIII, emission line of the second object, also at z = 0.640. Lens modeling suggests that they represent two images of the same z = 0.640 emission-line galaxy. Our Keck spectra also allow us to measure the redshift of an intervening galaxy at z = 0.394, located 3.2 arcsec away from the line of sight to the QSO. If the z = 0.120 QSO host galaxy is modeled as a singular isothermal sphere, its mass within the Einstein radius is M_E(r < 1 kpc) = 2.16e10 M_Sun and its velocity dispersion is sigma_SIS = 169 km/s. This is about 1 sigma away from the velocity dispersion estimated from the width of the QSO Hbeta emission line, sigma_*(M_BH) = 124 +/- 47 km/s. Deep optical HST imaging will be necessary to constrain the total radial mass profile of the QSO host galaxy using the detailed shape of the lensed source. This first case of a QSO acting as a strong lens on a more distant object opens new directions in the study of QSO host galaxies.Comment: 6 pages, 5 figures, accepted for publication in A&A Letters. Added new Keck spectroscop

    A Consistent Picture Emerges: A Compact X-ray Continuum Emission Region in the Gravitationally Lensed Quasar SDSS J0924+0219

    Full text link
    We analyze the optical, UV, and X-ray microlensing variability of the lensed quasar SDSS J0924+0219 using six epochs of Chandra data in two energy bands (spanning 0.4-8.0 keV, or 1-20 keV in the quasar rest frame), 10 epochs of F275W (rest-frame 1089A) Hubble Space Telescope data, and high-cadence R-band (rest-frame 2770A) monitoring spanning eleven years. Our joint analysis provides robust constraints on the extent of the X-ray continuum emission region and the projected area of the accretion disk. The best-fit half-light radius of the soft X-ray continuum emission region is between 5x10^13 and 10^15 cm, and we find an upper limit of 10^15 cm for the hard X-rays. The best-fit soft-band size is about 13 times smaller than the optical size, and roughly 7 GM_BH/c^2 for a 2.8x10^8 M_sol black hole, similar to the results for other systems. We find that the UV emitting region falls in between the optical and X-ray emitting regions at 10^14 cm < r_1/2,UV < 3x10^15 cm. Finally, the optical size is significantly larger, by 1.5*sigma, than the theoretical thin-disk estimate based on the observed, magnification-corrected I-band flux, suggesting a shallower temperature profile than expected for a standard disk.Comment: Replaced with accepted version to Ap

    Nudged Elastic Band calculation of the binding potential for liquids at interfaces

    Get PDF
    The wetting behavior of a liquid on solid substrates is governed by the nature of the effective interaction between the liquid-gas and the solid-liquid interfaces, which is described by the binding or wetting potential g(h)g(h) which is an excess free energy per unit area that depends on the liquid film height hh. Given a microscopic theory for the liquid, to determine g(h)g(h) one must calculate the free energy for liquid films of any given value of hh; i.e. one needs to create and analyze out-of-equilibrium states, since at equilibrium there is a unique value of hh, specified by the temperature and chemical potential of the surrounding gas. Here we introduce a Nudged Elastic Band (NEB) approach to calculate g(h)g(h) and illustrate the method by applying it in conjunction with a microscopic lattice density functional theory for the liquid. We show too that the NEB results are identical to those obtained with an established method based on using a fictitious additional potential to stabilize the non-equilibrium states. The advantages of the NEB approach are discussed.Comment: 5 pages, 2 figure

    COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses XIII: Time delays and 9-yr optical monitoring of the lensed quasar RX J1131-1231

    Full text link
    We present the results from nine years of optically monitoring the gravitationally lensed z=0.658 quasar RX J1131-1231. The R-band light curves of the four individual images of the quasar were obtained using deconvolution photometry for a total of 707 epochs. Several sharp quasar variability features strongly constrain the time delays between the quasar images. Using three different numerical techniques, we measure these delays for all possible pairs of quasar images while always processing the four light curves simultaneously. For all three methods, the delays between the three close images A, B, and C are compatible with being 0, while we measure the delay of image D to be 91 days, with a fractional uncertainty of 1.5% (1 sigma), including systematic errors. Our analysis of random and systematic errors accounts in a realistic way for the observed quasar variability, fluctuating microlensing magnification over a broad range of temporal scales, noise properties, and seasonal gaps. Finally, we find that our time-delay measurement methods yield compatible results when applied to subsets of the data.Comment: 11 pages, 9 figures, minor additions to the text only, techniques and results remain unchanged, A&A in pres

    COSMOGRAIL: XVII. Time delays for the quadruply imaged quasar PG 1115+080

    Get PDF
    Indexación: Scopus.Acknowledgements. The authors would like to thank R. Gredel for his help in setting up the program at the ESO MPIA 2.2 m telescope, and the anonymous referee for his or her comments on this work. This work is supported by the Swiss National Fundation. This research made use of Astropy, a community-developed core Python package for Astronomy (Astropy Collaboration et al. 2013, 2018) and the 2D graphics environment Matplotlib (Hunter 2007). K.R. acknowledge support from PhD fellowship FIB-UV 2015/2016 and Becas de Doctorado Nacional CONICYT 2017 and thanks the LSSTC Data Science Fellowship Program, her time as a Fellow has benefited this work. M.T. acknowledges support by the DFG grant Hi 1495/2-1. G. C.-F. C. acknowledges support from the Ministry of Education in Taiwan via Government Scholarship to Study Abroad (GSSA). D. C.-Y. Chao and S. H. Suyu gratefully acknowledge the support from the Max Planck Society through the Max Planck Research Group for S. H. Suyu. T. A. acknowledges support by the Ministry for the Economy, Development, and Tourism’s Programa Inicativa Científica Milenio through grant IC 12009, awarded to The Millennium Institute of Astrophysics (MAS).We present time-delay estimates for the quadruply imaged quasar PG 1115+080. Our results are based on almost daily observations for seven months at the ESO MPIA 2.2 m telescope at La Silla Observatory, reaching a signal-to-noise ratio of about 1000 per quasar image. In addition, we re-analyze existing light curves from the literature that we complete with an additional three seasons of monitoring with the Mercator telescope at La Palma Observatory. When exploring the possible source of bias we considered the so-called microlensing time delay, a potential source of systematic error so far never directly accounted for in previous time-delay publications. In 15 yr of data on PG 1115+080, we find no strong evidence of microlensing time delay. Therefore not accounting for this effect, our time-delay estimates on the individual data sets are in good agreement with each other and with the literature. Combining the data sets, we obtain the most precise time-delay estimates to date on PG 1115+080, with Δt(AB) = 8.3+1.5 -1.6 days (18.7% precision), Δt(AC) = 9.9+1.1 -1.1 days (11.1%) and Δt(BC) = 18.8+1.6 -1.6 days (8.5%). Turning these time delays into cosmological constraints is done in a companion paper that makes use of ground-based Adaptive Optics (AO) with the Keck telescope. © ESO 2018.https://www.aanda.org/articles/aa/abs/2018/08/aa33287-18/aa33287-18.htm
    • …
    corecore