168 research outputs found
The Elastic Compliance of Imperfect Interfaces: Review and Relationship to Ultrasonic Scattering
When a tensile load is applied to an elastic solid with an imperfect interface containing cracks or voids, the farfield displacement that would occur in the absence of the interface will be increased by localized deformations [1]. This extra extension can be modeled as the response of two half-spaces connected by a distributed spring. The spring stiffness per unit area, K, is a function of the topography of the partially contacting surfaces
Best practice guidelines for the molecular genetic diagnosis of maturity-onset diabetes of the young
Member of the EMQN MODY group: Gisela GasparAIMS/HYPOTHESIS: Mutations in the GCK and HNF1A genes are the most common cause of the monogenic forms of diabetes known as 'maturity-onset diabetes of the young'. GCK encodes the glucokinase enzyme, which acts as the pancreatic glucose sensor, and mutations result in stable, mild fasting hyperglycaemia. A progressive insulin secretory defect is seen in patients with mutations in the HNF1A and HNF4A genes encoding the transcription factors hepatocyte nuclear factor-1 alpha and -4 alpha. A molecular genetic diagnosis often changes management, since patients with GCK mutations rarely require pharmacological treatment and HNF1A/4A mutation carriers are sensitive to sulfonylureas. These monogenic forms of diabetes are often misdiagnosed as type 1 or 2 diabetes. Best practice guidelines for genetic testing were developed to guide testing and reporting of results
Assessing the information desire of patients with advanced cancer by providing information with a decision aid, which is evaluated in a randomized trial: a study protocol
Contains fulltext :
95653.pdf (publisher's version ) (Open Access)BACKGROUND: There is a continuing debate on the desirability of informing patients with cancer and thereby involving them in treatment decisions. On the one hand, information uptake may be hampered, and additional stress could be inflicted by involving these patients. On the other hand, even patients with advanced cancer desire information on risks and prognosis. To settle the debate, a decision aid will be developed and presented to patients with advanced disease at the point of decision making. The aid is used to assess the amount of information desired. Factors related to information desire are explored, as well as the ability of the medical oncologist to judge the patient's information desire. The effects of the information on patient well-being are assessed by comparing the decision aid group with a usual care group. METHODS/DESIGN: This study is a randomized controlled trial of patients with advanced colorectal, breast, or ovarian cancer who have started treatment with first-line palliative chemotherapy. The trial will consist of 100 patients in the decision aid group and 70 patients in the usual care group. To collect complete data of 170 patients, 246 patients will be approached for the study. Patients will complete a baseline questionnaire on sociodemographic data, well-being measures, and psychological measures, believed to predict information desire. The medical oncologist will judge the patient's information desire. After disease progression is diagnosed, the medical oncologist offers the choice between second-line palliative chemotherapy plus best supportive care (BSC) and BSC alone. Randomization will take place to determine whether patients will receive usual care (n = 70) or usual care and the decision aid (n = 100). The aid offers information about the potential risks and benefits of both treatment options, in terms of adverse events, tumour response, and survival. Patients decide for each item whether they desire the information or not. Two follow-up questionnaires will evaluate the effect of the decision aid. DISCUSSION: This study attempts to settle the debate on the desirability of informing patients with cancer. In contrast to several earlier studies, we will actually deliver information on treatment options to patients at the point of decision making
siRNA Silencing of Proteasome Maturation Protein (POMP) Activates the Unfolded Protein Response and Constitutes a Model for KLICK Genodermatosis
Keratosis linearis with ichthyosis congenita and keratoderma (KLICK) is an autosomal recessive skin disorder associated with a single-nucleotide deletion in the 5′untranslated region of the proteasome maturation protein (POMP) gene. The deletion causes a relative switch in transcription start sites for POMP, predicted to decrease levels of POMP protein in terminally differentiated keratinocytes. To investigate the pathophysiology behind KLICK we created an in vitro model of the disease using siRNA silencing of POMP in epidermal air-liquid cultures. Immunohistochemical analysis of the tissue constructs revealed aberrant staining of POMP, proteasome subunits and the skin differentiation marker filaggrin when compared to control tissue constructs. The staining patterns of POMP siRNA tissue constructs showed strong resemblance to those observed in skin biopsies from KLICK patients. Western blot analysis of lysates from the organotypic tissue constructs revealed an aberrant processing of profilaggrin to filaggrin in samples transfected with siRNA against POMP. Knock-down of POMP expression in regular cell cultures resulted in decreased amounts of proteasome subunits. Prolonged silencing of POMP in cultured cells induced C/EBP homologous protein (CHOP) expression consistent with an activation of the unfolded protein response and increased endoplasmic reticulum (ER) stress. The combined results indicate that KLICK is caused by reduced levels of POMP, leading to proteasome insufficiency in differentiating keratinocytes. Proteasome insufficiency disturbs terminal epidermal differentiation, presumably by increased ER stress, and leads to perturbed processing of profilaggrin. Our findings underline a critical role for the proteasome in human epidermal differentiation
Impaired Growth and Force Production in Skeletal Muscles of Young Partially Pancreatectomized Rats: A Model of Adolescent Type 1 Diabetic Myopathy?
This present study investigated the temporal effects of type 1 diabetes mellitus (T1DM) on adolescent skeletal muscle growth, morphology and contractile properties using a 90% partial pancreatecomy (Px) model of the disease. Four week-old male Sprague-Dawley rats were randomly assigned to Px (n = 25) or Sham (n = 24) surgery groups and euthanized at 4 or 8 weeks following an in situ assessment of muscle force production. Compared to Shams, Px were hyperglycemic (>15 mM) and displayed attenuated body mass gains by days 2 and 4, respectively (both P<0.05). Absolute maximal force production of the gastrocnemius plantaris soleus complex (GPS) was 30% and 50% lower in Px vs. Shams at 4 and 8 weeks, respectively (P<0.01). GP mass was 35% lower in Px vs Shams at 4 weeks (1.24±0.06 g vs. 1.93±0.03 g, P<0.05) and 45% lower at 8 weeks (1.57±0.12 vs. 2.80±0.06, P<0.05). GP fiber area was 15–20% lower in Px vs. Shams at 4 weeks in all fiber types. At 8 weeks, GP type I and II fiber areas were ∼25% and 40% less, respectively, in Px vs. Shams (group by fiber type interactions, P<0.05). Phosphorylation states of 4E-BP1 and S6K1 following leucine gavage increased 2.0- and 3.5-fold, respectively, in Shams but not in Px. Px rats also had impaired rates of muscle protein synthesis in the basal state and in response to gavage. Taken together, these data indicate that exposure of growing skeletal muscle to uncontrolled T1DM significantly impairs muscle growth and function largely as a result of impaired protein synthesis in type II fibers
SREBP Coordinates Iron and Ergosterol Homeostasis to Mediate Triazole Drug and Hypoxia Responses in the Human Fungal Pathogen Aspergillus fumigatus
Sterol regulatory element binding proteins (SREBPs) are a class of basic helix-loop-helix transcription factors that regulate diverse cellular responses in eukaryotes. Adding to the recognized importance of SREBPs in human health, SREBPs in the human fungal pathogens Cryptococcus neoformans and Aspergillus fumigatus are required for fungal virulence and susceptibility to triazole antifungal drugs. To date, the exact mechanism(s) behind the role of SREBP in these observed phenotypes is not clear. Here, we report that A. fumigatus SREBP, SrbA, mediates regulation of iron acquisition in response to hypoxia and low iron conditions. To further define SrbA's role in iron acquisition in relation to previously studied fungal regulators of iron metabolism, SreA and HapX, a series of mutants were generated in the ΔsrbA background. These data suggest that SrbA is activated independently of SreA and HapX in response to iron limitation, but that HapX mRNA induction is partially dependent on SrbA. Intriguingly, exogenous addition of high iron or genetic deletion of sreA in the ΔsrbA background was able to partially rescue the hypoxia growth, triazole drug susceptibility, and decrease in ergosterol content phenotypes of ΔsrbA. Thus, we conclude that the fungal SREBP, SrbA, is critical for coordinating genes involved in iron acquisition and ergosterol biosynthesis under hypoxia and low iron conditions found at sites of human fungal infections. These results support a role for SREBP–mediated iron regulation in fungal virulence, and they lay a foundation for further exploration of SREBP's role in iron homeostasis in other eukaryotes
Social navigation
In this chapter we present one of the pioneer approaches in supporting users in navigating the complex information spaces, social navigation support. Social navigation support is inspired by natural tendencies of individuals to follow traces of each other in exploring the world, especially when dealing with uncertainties. In this chapter, we cover details on various approaches in implementing social navigation support in the information space as we also connect the concept to supporting theories. The first part of this chapter reviews related theories and introduces the design space of social navigation support through a series of example applications. The second part of the chapter discusses the common challenges in design and implementation of social navigation support, demonstrates how these challenges have been addressed, and reviews more recent direction of social navigation support. Furthermore, as social navigation support has been an inspirational approach to various other social information access approaches we discuss how social navigation support can be integrated with those approaches. We conclude with a review of evaluation methods for social navigation support and remarks about its current state
Modelling mammalian energetics: the heterothermy problem
Global climate change is expected to have strong effects on the world’s flora and fauna. As a result, there has been a recent increase in the number of meta-analyses and mechanistic models that attempt to predict potential responses of mammals to changing climates. Many models that seek to explain the effects of environmental temperatures on mammalian energetics and survival assume a constant body temperature. However, despite generally being regarded as strict homeotherms, mammals demonstrate a large degree of daily variability in body temperature, as well as the ability to reduce metabolic costs either by entering torpor, or by increasing body temperatures at high ambient temperatures. Often, changes in body temperature variability are unpredictable, and happen in response to immediate changes in resource abundance or temperature. In this review we provide an overview of variability and unpredictability found in body temperatures of extant mammals, identify potential blind spots in the current literature, and discuss options for incorporating variability into predictive mechanistic models
Dating the Origin of Language Using Phonemic Diversity
Language is a key adaptation of our species, yet we do not know when it evolved. Here, we use data on language phonemic diversity to estimate a minimum date for the origin of language. We take advantage of the fact that phonemic diversity evolves slowly and use it as a clock to calculate how long the oldest African languages would have to have been around in order to accumulate the number of phonemes they possess today. We use a natural experiment, the colonization of Southeast Asia and Andaman Islands, to estimate the rate at which phonemic diversity increases through time. Using this rate, we estimate that present-day languages date back to the Middle Stone Age in Africa. Our analysis is consistent with the archaeological evidence suggesting that complex human behavior evolved during the Middle Stone Age in Africa, and does not support the view that language is a recent adaptation that has sparked the dispersal of humans out of Africa. While some of our assumptions require testing and our results rely at present on a single case-study, our analysis constitutes the first estimate of when language evolved that is directly based on linguistic data
- …