80 research outputs found

    CCN proteins as potential actionable targets in scleroderma

    Full text link
    Systemic sclerosis (SSc) is a complex autoimmune connective tissue disease combining inflammatory, vasculopathic and fibrotic manifestations. Skin features, which give their name to the disease and are considered as diagnostic as well as prognostic markers, have not been thoroughly investigated in terms of therapeutic targets. CCN proteins (CYR61/CCN1, CTGF/CCN2, NOV/CCN3 and WISP1â 2â 3 as CCN4â 5â 6) are a family of secreted matricellular proteins implicated in major cellular processes such as cell growth, migration, differentiation. They have already been implicated in key pathophysiological processes of SSc, namely fibrosis, vasculopathy and inflammation. In this review, we discuss the possible implication of CCN proteins in SSc pathogenesis, with a special focus on skin features, and identify the potential actionable CCN targets.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/147777/1/exd13806.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/147777/2/exd13806_am.pd

    Evidence for a Nonallelic Heterogeneity of Epidermodysplasia Verruciformis with Two Susceptibility Loci Mapped to Chromosome Regions 2p21–p24 and 17q25

    Get PDF
    Epidermodysplasia verruciformis is a rare genodermatosis associated with a high risk of skin cancer. This condition is characterized by an abnormal susceptibility to specific related human papillomavirus genotypes, including the oncogenic HPV5. Epidermodysplasia verruciformis is usually considered as an autosomal recessive disease. We recently mapped a susceptibility locus for epidermodysplasia verruciformis (EV1) to chromosome 17qter within the 1 cM interval between markers D17S939 and D17S802. We report here the genotyping for 10 microsatellite markers spanning 29 cM around EV1 in two consanguineous epidermodysplasia verruciformis families from Colombia (C2) and France (F1) comprising five patients and two patients, respectively. Using homozygosity mapping, linkage with 17qter markers was observed for family C2 only. Multipoint linkage analysis yielded maximum multipoint LOD-score values above 10 between markers D17S1839 and D17S802 encompassing the EV1 locus. A genome-wide search performed in family F1 yielded evidence for linkage between epidermodysplasia verruciformis and the chromosomal 2p marker D2S365. Nine additional microsatellite markers spanning 15 cM in this region were analyzed. Assuming an autosomal recessive inheritance with a complete penetrance, the expected maximum two-point LOD-score value of 1.8 was obtained for three markers and multipoint linkage analysis yielded a maximum LOD-score value of 3.51 between markers D2S2144 and D2S392. Haplotype analysis allowed to map a candidate region for a second epidermodysplasia verruciformis susceptibility locus (EV2) within the 8 cM interval between markers D2S171 and D2S2347 of the 2p21–p24 region. In contrast, linkage with 2p markers was excluded for family C2 and for the three families in which we mapped EV1 previously. The disclosure of two susceptibility loci for epidermodysplasia verruciformis provides evidence for a nonallelic heterogeneity in this disease

    Maintenance Therapy of Adult Vitiligo with 0.1% Tacrolimus Ointment: A Randomized, Double Blind, Placebo–Controlled Study

    Get PDF
    The risk of relapse after successful repigmentation in vitiligo is estimated to 40% within the first year. It has been shown in atopic dermatitis that continuous low-level use of topical corticosteroids and calcineurin inhibitors in previously affected skin can prevent new flares. We hypothesized that a twice-weekly application of 0.1% tacrolimus ointment might be effective for maintaining repigmentation in therapeutically repigmented lesions of vitiligo patients. After randomization, sixteen patients with 31 patches were assigned to the placebo group and 19 patients with 41 patches were assigned to the tacrolimus group. In the intention-to-treat analysis, 48.4% of lesions showed depigmentation in the placebo group, whereas 26.8% did in the tacrolimus group (P=0.059). The intention-to-treat results did not remain significant after adjustment for within-patient clustering, odds ratio (OR) 2.55; 95% confidence interval (CI; 0.65–9.97); P=0.1765. The per-protocol analysis (n=56) showed that 40% of lesions had some depigmentation in the placebo group, whereas only 9.7% did in the tacrolimus group (P=0.0075). The per-protocol results remained significant after adjustment for within-patient clustering: OR 6.22; 95% CI (1.48–26.12); P=0.0299. Our study shows that twice-weekly application of 0.1% tacrolimus ointment is effective in preventing the depigmentation of vitiligo patches that have been previously successfully repigmented

    Xeroderma pigmentosum: clues to understanding cancer initiation

    Get PDF
    AbstractXeroderma pigmentosum (XP) type C is a rare autosomal recessive disorder that occurs because of inactivation of the xeroderma pigmentosum group C (XPC) protein, which is an important DNA damage recognition protein involved in DNA nucleotide excision repair (NER). This defect, which prevents removal of a wide array of direct and indirect DNA lesions, is associated with a decrease in catalase activity. As a novel photoprotective approach, lentivirus-mediated catalase overexpression in XPC human keratinocytes results in a marked decrease in sunburn cell formation, caspase-3 activation, and p53 accumulation following UVB irradiation. While not correcting the gene defect, indirect gene therapy using antioxidant enzymes may be helpful in limiting photosensitivity in XP type C, as well as in other monogenic/polygenic photosensitive disorders characterized by reactive oxygen species (ROS) accumulation. Hypoxia-inducible factor-1 (HIF-1), a major transcription factor sensitive to oxygen levels, responds to various stress factors. As a common stressor of skin, UVB induces a biphasic HIF-1a variation through ROS generation in keratinocytes. HIF-1a has an important regulator effect on the expression of XPC protein and other NER genes, indicating indirect regulation of NER by ROS. The intrinsic genomic instability arising in XP type C provides a good opportunity to investigate the complex molecular mechanisms underlying the Warburg effect (the shift of mito-chondrial metabolism towards glycolysis). Overall, the monogenic disorder XP type C is a powerful tool for studying photoprotection and cancer

    Variant of TYR and Autoimmunity Susceptibility Loci in Generalized Vitiligo.

    Get PDF
    BACKGROUND Generalized vitiligo is an autoimmune disease characterized by melanocyte loss, which results in patchy depigmentation of skin and hair, and is associated with an elevated risk of other autoimmune diseases. METHODS To identify generalized vitiligo susceptibility loci, we conducted a genomewide association study. We genotyped 579,146 single-nucleotide polymorphisms (SNPs) in 1514 patients with generalized vitiligo who were of European-derived white (CEU) ancestry and compared the genotypes with publicly available control genotypes from 2813 CEU persons. We then tested 50 SNPs in two replication sets, one comprising 677 independent CEU patients and 1106 CEU controls and the other comprising 183 CEU simplex trios with generalized vitiligo and 332 CEU multiplex families. RESULTS We detected significant associations between generalized vitiligo and SNPs at several loci previously associated with other autoimmune diseases. These included genes encoding major-histocompatibility-complex class I molecules (P=9.05×10−23) and class II molecules (P=4.50×10−34), PTPN22 (P=1.31×10−7), LPP (P=1.01×10−11), IL2RA (P=2.78×10−9), UBASH3A (P=1.26×10−9), and C1QTNF6 (P=2.21×10−16). We also detected associations between generalized vitiligo and SNPs in two additional immune-related loci, RERE (P=7.07×10−15) and GZMB (P=3.44×10−8), and in a locus containing TYR (P=1.60×10−18), encoding tyrosinase. CONCLUSIONS We observed associations between generalized vitiligo and markers implicating multiple genes, some associated with other autoimmune diseases and one (TYR) that may mediate target-cell specificity and indicate a mutually exclusive relationship between susceptibility to vitiligo and susceptibility to melanoma

    Common variants in FOXP1 are associated with generalized vitiligo

    Get PDF
    In a recent genome-wide association study of generalized vitiligo, we identified ten confirmed susceptibility loci. By testing additional loci that showed suggestive association in the genome-wide study, using two replication cohorts of European descent, we observed replicated association of generalized vitiligo with variants at 3p13 encompassing FOXP1 (rs17008723, combined P = 1.04 × 10−8) and with variants at 6q27 encompassing CCR6 (rs6902119, combined P = 3.94 × 10−7)

    Comprehensive association analysis of candidate genes for generalized vitiligo supports XBP1, FOXP3, and TSLP

    Get PDF
    We previously carried out a genome-wide association study of generalized vitiligo (GV) in non-Hispanic whites, identifying 13 confirmed susceptibility loci. In this study, we re-analyzed the genome-wide data set (comprising 1,392 cases and 2,629 controls) to specifically test association of all 33 GV candidate genes that have previously been suggested for GV, followed by meta-analysis incorporating both current and previously published data. We detected association of three of the candidate genes tested: TSLP (rs764916, P3.0E-04, odds ratio (OR)1.60; meta-P for rs38069333.1E-03), XBP1 (rs6005863, P3.6E-04, OR1.17; meta-P for rs22695779.5E-09), and FOXP3 (rs11798415, P5.8E-04, OR1.19). Association of GV with CTLA4 (rs12992492, P5.9E-05, OR1.20; meta-P for rs2317751.0E-04) seems to be secondary to epidemiological association with other concomitant autoimmune diseases. Within the major histocompatibility complex (MHC), at 6p21.33, association with TAP1-PSMB8 (rs3819721, P5.2E-06) seems to derive from linkage disequilibrium with major primary signals in the MHC class I and class II regions

    Genome-wide association studies of autoimmune vitiligo identify 23 new risk loci and highlight key pathways and regulatory variants

    Get PDF
    Vitiligo is an autoimmune disease in which depigmented skin results from the destruction of melanocytes1, with epidemiological association with other autoimmune diseases2. In previous linkage and genome-wide association studies (GWAS1 and GWAS2), we identified 27 vitiligo susceptibility loci in patients of European ancestry. We carried out a third GWAS (GWAS3) in European-ancestry subjects, with augmented GWAS1 and GWAS2 controls, genome-wide imputation, and meta-analysis of all three GWAS, followed by an independent replication. The combined analyses, with 4,680 cases and 39,586 controls, identified 23 new significantly associated loci and 7 suggestive loci. Most encode immune and apoptotic regulators, with some also associated with other autoimmune diseases, as well as several melanocyte regulators. Bioinformatic analyses indicate a predominance of causal regulatory variation, some of which corresponds to expression quantitative trait loci (eQTLs) at these loci. Together, the identified genes provide a framework for the genetic architecture and pathobiology of vitiligo, highlight relationships with other autoimmune diseases and melanoma, and offer potential targets for treatment

    Intrinsic and Extrinsic Pathomechanisms in Vitiligo

    No full text
    corecore