37 research outputs found

    Achieving a cure for HIV infection: do we have reasons to be optimistic?

    Get PDF
    The introduction of highly active antiretroviral therapy (HAART) in 1996 has transformed a lethal disease to a chronic pathology with a dramatic decrease in mortality and morbidity of AIDS-related symptoms in infected patients. However, HAART has not allowed the cure of HIV infection, the main obstacle to HIV eradication being the existence of quiescent reservoirs. Several other problems have been encountered with HAART (such as side effects, adherence to medication, emergence of resistance and cost of treatment), and these motivate the search for new ways to treat these patients. Recent advances hold promise for the ultimate cure of HIV infection, which is the topic of this review. Besides these new strategies aiming to eliminate the virus, efforts must be made to improve current HAART. We believe that the cure of HIV infection will not be attained in the short term and that a strategy based on purging the reservoirs has to be associated with an aggressive HAART strategy

    Histone deacetylases in viral infections

    Get PDF
    Chromatin remodeling and gene expression are regulated by histone deacetylases (HDACs) that condense the chromatin structure by deacetylating histones. HDACs comprise a group of enzymes that are responsible for the regulation of both cellular and viral genes at the transcriptional level. In mammals, a total of 18 HDACs have been identified and grouped into four classes, i.e., class I (HDACs 1, 2, 3, 8), class II (HDACs 4, 5, 6, 7, 9, 10), class III (Sirt1–Sirt7), and class IV (HDAC11). We review here the role of HDACs on viral replication and how HDAC inhibitors could potentially be used as new therapeutic tools in several viral infections

    Entry of Herpes Simplex Virus Type 1 (HSV-1) into the Distal Axons of Trigeminal Neurons Favors the Onset of Nonproductive, Silent Infection

    Get PDF
    Following productive, lytic infection in epithelia, herpes simplex virus type 1 (HSV-1) establishes a lifelong latent infection in sensory neurons that is interrupted by episodes of reactivation. In order to better understand what triggers this lytic/latent decision in neurons, we set up an organotypic model based on chicken embryonic trigeminal ganglia explants (TGEs) in a double chamber system. Adding HSV-1 to the ganglion compartment (GC) resulted in a productive infection in the explants. By contrast, selective application of the virus to distal axons led to a largely nonproductive infection that was characterized by the poor expression of lytic genes and the presence of high levels of the 2.0-kb major latency-associated transcript (LAT) RNA. Treatment of the explants with the immediate-early (IE) gene transcriptional inducer hexamethylene bisacetamide, and simultaneous co-infection of the GC with HSV-1, herpes simplex virus type 2 (HSV-2) or pseudorabies virus (PrV) helper virus significantly enhanced the ability of HSV-1 to productively infect sensory neurons upon axonal entry. Helper-virus-induced transactivation of HSV-1 IE gene expression in axonally-infected TGEs in the absence of de novo protein synthesis was dependent on the presence of functional tegument protein VP16 in HSV-1 helper virus particles. After the establishment of a LAT-positive silent infection in TGEs, HSV-1 was refractory to transactivation by superinfection of the GC with HSV-1 but not with HSV-2 and PrV helper virus. In conclusion, the site of entry appears to be a critical determinant in the lytic/latent decision in sensory neurons. HSV-1 entry into distal axons results in an insufficient transactivation of IE gene expression and favors the establishment of a nonproductive, silent infection in trigeminal neurons

    A functional genetic screen identifies retinoic acid signaling as a target of histone deacetylase inhibitors

    No full text
    Understanding the pathways that are targeted by cancer drugs is instrumental for their rational use in a clinical setting. Inhibitors of histone deacetylases (HDACI) selectively inhibit proliferation of malignant cells and are used for the treatment of cancer, but their cancer selectivity is understood poorly. We conducted a functional genetic screen to address the mechanism(s) of action of HDACI. We report here that ectopic expression of two genes that act on retinoic acid (RA) signaling can cause resistance to growth arrest and apoptosis induced by HDACI of different chemical classes: the retinoic acid receptor α (RARα) and preferentially expressed antigen of melanoma (PRAME), a repressor of RA signaling. Treatment of cells with HDACI induced RA signaling, which was inhibited by RARα or PRAME expression. Conversely, RAR-deficient cells and PRAME-knockdown cells show enhanced sensitivity to HDACI in vitro and in mouse xenograft models. Finally, a combination of RA and HDACI acted synergistically to activate RA signaling and inhibit tumor growth. These experiments identify the RA pathway as a rate-limiting target of HDACI and suggest strategies to enhance the therapeutic efficacy of HDACI
    corecore