4,188 research outputs found

    Modeling of arylamide helix mimetics in the p53 peptide binding site of hDM2 suggests parallel and anti-parallel conformations are both stable.

    Get PDF
    The design of novel α-helix mimetic inhibitors of protein-protein interactions is of interest to pharmaceuticals and chemical genetics researchers as these inhibitors provide a chemical scaffold presenting side chains in the same geometry as an α-helix. This conformational arrangement allows the design of high affinity inhibitors mimicking known peptide sequences binding specific protein substrates. We show that GAFF and AutoDock potentials do not properly capture the conformational preferences of α-helix mimetics based on arylamide oligomers and identify alternate parameters matching solution NMR data and suitable for molecular dynamics simulation of arylamide compounds. Results from both docking and molecular dynamics simulations are consistent with the arylamides binding in the p53 peptide binding pocket. Simulations of arylamides in the p53 binding pocket of hDM2 are consistent with binding, exhibiting similar structural dynamics in the pocket as simulations of known hDM2 binders Nutlin-2 and a benzodiazepinedione compound. Arylamide conformations converge towards the same region of the binding pocket on the 20 ns time scale, and most, though not all dihedrals in the binding pocket are well sampled on this timescale. We show that there are two putative classes of binding modes for arylamide compounds supported equally by the modeling evidence. In the first, the arylamide compound lies parallel to the observed p53 helix. In the second class, not previously identified or proposed, the arylamide compound lies anti-parallel to the p53 helix

    Stapled Peptides as HIF‐1α/p300 Inhibitors: Helicity Enhancement in the Bound State Increases Inhibitory Potency

    Get PDF
    Protein–protein interactions (PPIs) control virtually all cellular processes and have thus emerged as potential targets for development of molecular therapeutics. Peptide‐based inhibitors of PPIs are attractive given that they offer recognition potency and selectivity features that are ideal for function, yet, they do not predominantly populate the bioactive conformation, frequently suffer from poor cellular uptake and are easily degraded, for example, by proteases. The constraint of peptides in a bioactive conformation has emerged as a promising strategy to mitigate against these liabilities. In this work, using peptides derived from hypoxia‐inducible factor 1 (HIF‐1α) together with dibromomaleimide stapling, we identify constrained peptide inhibitors of the HIF‐1α/p300 interaction that are more potent than their unconstrained sequences. Contrary to expectation, the increased potency does not correlate with an increased population of an α‐helical conformation in the unbound state as demonstrated by experimental circular dichroism analysis. Rather, the ability of the peptide to adopt a bioactive α‐helical conformation in the p300 bound state is better supported in the constrained variant as demonstrated by molecular dynamics simulations and circular dichroism difference spectra

    ABC-F proteins mediate antibiotic resistance through ribosomal protection

    Get PDF
    Members of the ABC-F subfamily of ATP-binding cassette proteins mediate resistance to a broad array of clinically important antibiotic classes that target the ribosome of Gram positive pathogens. The mechanism by which these proteins act has been a subject of long-standing controversy, with two competing hypotheses each having gained considerable support: antibiotic efflux versus ribosomal protection. Here, we report on studies employing a combination of bacteriological and biochemical techniques to unravel the mechanism of resistance of these proteins, and provide several lines of evidence that together offer clear support to the ribosomal protection hypothesis. Of particular note, we show that addition of purified ABC-F proteins to an in vitro translation assay prompts dose-dependent rescue of translation, and demonstrate that such proteins are capable of displacing antibiotic from the ribosome in vitro. To our knowledge, these experiments constitute the first direct evidence that ABC-F proteins mediate antibiotic resistance through ribosomal protection

    ‘Bring back Hitler’s gas chambers’: asylum seeking, Nazis and facebook – a discursive analysis

    Get PDF
    In this article, we explore how talk about Nazis is used in Internet discussions regarding asylum seeking, and the issue of whether or not opposition to asylum seeking is racist. Discursive analysis was conducted on discussions about asylum seeking from the social networking website Facebook, where references to Nazis were made. Three strategies were identified: (1) people supporting asylum seeking accuse asylum opponents of being racist by referring to Nazis; (2) opponents of asylum seeking deal with such accusations by arguing that the debate is being suppressed because of references to Nazis; (3) in the final, and most striking, strategy, opponents of asylum draw upon ideas associated with the Nazis and Hitler to bring about their anti-asylum position. These findings are discussed in relation to how the link between Nazis and racism is emerging in the asylum debat

    Identification of a small molecule inhibitor of Ebolavirus genome replication and transcription using in silico screening.

    Get PDF
    Ebola virus (EBOV) causes a severe haemorrhagic fever in humans and has a mortality rate over 50%. With no licensed drug treatments available, EBOV poses a significant threat. Investigations into possible therapeutics have been severely hampered by the classification of EBOV as a BSL4 pathogen. Here, we describe a drug discovery pathway combining in silico screening of compounds predicted to bind to a hydrophobic pocket on the nucleoprotein (NP); with a robust and rapid EBOV minigenome assay for inhibitor validation at BSL2. One compound (MCCB4) was efficacious (EC50 4.8â€ŻÎŒM), exhibited low cytotoxicity (CC50 > 100â€ŻÎŒM) and was specific, with no effect on either a T7 RNA polymerase driven firefly luciferase or a Bunyamwera virus minigenome. Further investigations revealed that this small molecule inhibitor was able to outcompete established replication complexes, an essential aspect for a potential EBOV treatment

    Redox linked flavin sites in extracellular decaheme proteins involved in microbe-mineral electron transfer

    Get PDF
    Extracellular microbe-mineral electron transfer is a major driving force for the oxidation of organic carbon in many subsurface environments. Extracellular multi-heme cytochromes of the Shewenella genus play a major role in this process but the mechanism of electron exchange at the interface between cytochrome and acceptor is widely debated. The 1.8 Å x-ray crystal structure of the decaheme MtrC revealed a highly conserved CX8C disulfide that, when substituted for AX8A, severely compromised the ability of S. oneidensis to grow under aerobic conditions. Reductive cleavage of the disulfide in the presence of flavin mononucleotide (FMN) resulted in the reversible formation of a stable flavocytochrome. Similar results were also observed with other decaheme cytochromes, OmcA, MtrF and UndA. The data suggest that these decaheme cytochromes can transition between highly reactive flavocytochromes or less reactive cytochromes, and that this transition is controlled by a redox active disulfide that responds to the presence of oxygen

    Reverse Myocardial Remodeling Following Valve Repair in Patients With Chronic Severe Primary Degenerative Mitral Regurgitation

    Get PDF
    OBJECTIVES: The aims of this study were to quantify preoperative myocardial fibrosis using late gadolinium enhancement (LGE), extracellular volume fraction (ECV%), and indexed extracellular volume (iECV) on cardiac magnetic resonance; determine whether this varies following surgery; and examine the impact on postoperative outcomes. BACKGROUND: Myocardial fibrosis complicates chronic severe primary mitral regurgitation and is associated with left ventricular dilatation and dysfunction. It is not known if this nonischemic fibrosis is reversible following surgery or if it affects ventricular remodeling and patient outcomes. METHODS: A multicenter prospective study was conducted among 104 subjects with primary mitral regurgitation undergoing mitral valve repair. Cardiac magnetic resonance and cardiopulmonary exercise stress testing were performed preoperatively and ≄6 months after surgery. Symptoms were assessed using the Minnesota Living With Heart Failure Questionnaire. RESULTS: Mitral valve repair was performed for Class 2a indications in 65 patients and Class 1 indications in 39 patients. Ninety-three patients were followed up at 8.8 months (interquartile range: 7.4 months-10.6 months). Following surgery, there were significant reductions in both ECV% (from 27.4% to 26.6%; P = 0.027) and iECV (from 17.9 to 15.4 mL/m2; P < 0.001), but the incidence of LGE was unchanged. Neither preoperative ECV% nor LGE affected postoperative function, but iECV predicted left ventricular end-systolic volume index (ÎČ = 1.04; 95% CI: 0.49 to 1.58; P < 0.001) and left ventricular ejection fraction (ÎČ = -0.61; 95% CI: -1.05 to -0.18; P = 0.006). Patients with above-median iECV of ≄17.6 mL/m2 had significantly larger postoperative values of left ventricular end-systolic volume index (30.5 ± 12.7 mL/m2 vs 23.9 ± 8.0 mL/m2; P = 0.003), an association that remained significant in subcohort analyses of patients in New York Heart Association functional class I. CONCLUSIONS: Mitral valve surgery results in reductions in ECV% and iECV, which are surrogates of diffuse myocardial fibrosis, and preoperative iECV predicts the degree of postoperative remodeling irrespective of symptoms. (The Role of Myocardial Fibrosis in Degenerative Mitral Regurgitation; NCT02355418)

    Psychogenic palatal tremor may be underrecognized: reappraisal of a large series of cases.

    Get PDF
    Palatal tremor is characterized by rhythmic movements of the soft palate and can be essential or symptomatic. Some patients can have palatal movements as a special skill or due to palatal tics. Psychogenic palatal tremor is recognized but rarely reported in the literature

    Mechanical Properties of End-crosslinked Entangled Polymer Networks using Sliplink Brownian Dynamics Simulations

    Full text link
    The mechanical properties of a polymeric network containing both crosslinks and sliplinks (entanglements) are studied using a multi-chain Brownian dynamics simulation. We coarse-grain at the level of chain segments connecting consecutive nodes (cross- or sliplinks), with particular attention to the Gaussian statistics of the network. Affine displacement of nodes is not imposed: their displacement as well as sliding of monomers through sliplinks is governed by force balances. The simulation results of stress in uniaxial extension and the full stress tensor in simple shear including the (non-zero) second normal stress difference are presented for monodisperse chains with up to 18 entanglements between two crosslinks. The cases of two different force laws of the subchains (Gaussian chains and chains with finite extensibility) for two different numbers of monomers in a subchain (no = 50 and no = 100) are examined. It is shown that the additivity assumption of slip- and crosslink contribution holds for sufficiently long chains with two or more entanglements, and that it can be used to construct the strain response of a network of infinitely long chains. An important consequence is that the contribution of sliplinks to the small-strain shear modulus is about &#8532; of the contribution of a crosslink
    • 

    corecore