117 research outputs found

    Opportunities to improve the impact of two national clinical audit programmes: a theory-guided analysis

    Get PDF
    Background Audit and feedback is widely used in healthcare improvement, with evidence of modest yet potentially important effects upon professional practice. There are approximately 60 national clinical audit programmes in the UK. These programmes often develop and adapt new ways of delivering feedback to optimise impacts on clinical practice. Two such programmes, the National Diabetes Audit (NDA) and the Trauma Audit Research Network (TARN), recently introduced changes to their delivery of feedback. We assessed the extent to which the design of these audit programmes and their recent changes were consistent with best practice according to the Clinical Performance Feedback Intervention Theory (CP-FIT). This comprehensive framework specifies how variables related to the feedback itself, the recipient, and the context operate via explanatory mechanisms to influence feedback success. Methods We interviewed 19 individuals with interests in audit and feedback, including researchers, audit managers, healthcare staff, and patient and public representatives. This range of expert perspectives enabled a detailed exploration of feedback from the audit programmes. We structured interviews around the CP-FIT feedback cycle and its component processes (e.g. Data collection and analysis, Interaction). Our rapid analytic approach explored the extent to which both audits applied features consistent with CP-FIT. Results Changes introduced by the audit programmes were consistent with CP-FIT. Specifically, the NDA’s increased frequency of feedback augmented existing strengths, such as automated processes (CP-FIT component: Data collection and analysis) and being a credible source of feedback (Acceptance). TARN’s new analytic tool allowed greater interactivity, enabling recipients to interrogate their data (Verification; Acceptance). We also identified scope for improvement in feedback cycles, such as targeting of feedback recipients (Interaction) and feedback complexity (Perception) for the NDA and specifying recommendations (Intention) and demonstrating impact (Clinical performance improvement) for TARN. Conclusions The changes made by the two audit programmes appear consistent with suggested best practice, making clinical improvement more likely. However, observed weaknesses in the feedback cycle may limit the benefits of these changes. Applying CP-FIT via a rapid analysis approach helps identify strengths and remediable weaknesses in the design of audit programmes that can be shared with them in a timely manner

    Key features of palliative care service delivery to Indigenous peoples in Australia, New Zealand, Canada and the United States: A comprehensive review

    Get PDF
    Background: Indigenous peoples in developed countries have reduced life expectancies, particularly from chronic diseases. The lack of access to and take up of palliative care services of Indigenous peoples is an ongoing concern. Objectives: To examine and learn from published studies on provision of culturally safe palliative care service delivery to Indigenous people in Australia, New Zealand (NZ), Canada and the United States of America (USA); and to compare Indigenous peoples’ preferences, needs, opportunities and barriers to palliative care. Methods: A comprehensive search of multiple databases was undertaken. Articles were included if they were published in English from 2000 onwards and related to palliative care service delivery for Indigenous populations; papers could use quantitative or qualitative approaches. Common themes were identified using thematic synthesis. Studies were evaluated using Daly’s hierarchy of evidence-for-practice in qualitative research. Results: Of 522 articles screened, 39 were eligible for inclusion. Despite diversity in Indigenous peoples’ experiences across countries, some commonalities were noted in the preferences for palliative care of Indigenous people: to die close to or at home; involvement of family; and the integration of cultural practices. Barriers identified included inaccessibility, affordability, lack of awareness of services, perceptions of palliative care, and inappropriate services. Identified models attempted to address these gaps by adopting the following strategies: community engagement and ownership; flexibility in approach; continuing education and training; a whole-of-service approach; and local partnerships among multiple agencies. Better engagement with Indigenous clients, an increase in number of palliative care patients, improved outcomes, and understanding about palliative care by patients and their families were identified as positive achievements. Conclusions: The results provide a comprehensive overview of identified effective practices with regards to palliative care delivered to Indigenous populations to guide future program developments in this field. Further research is required to explore the palliative care needs and experiences of Indigenous people living in urban areas

    Central synapses release a resource-efficient amount of glutamate.

    Get PDF
    Why synapses release a certain amount of neurotransmitter is poorly understood. We combined patch-clamp electrophysiology with computer simulations to estimate how much glutamate is discharged at two distinct central synapses of the rat. We found that, regardless of some uncertainty over synaptic microenvironment, synapses generate the maximal current per released glutamate molecule while maximizing signal information content. Our result suggests that synapses operate on a principle of resource optimization

    Determining the neurotransmitter concentration profile at active synapses

    Get PDF
    Establishing the temporal and concentration profiles of neurotransmitters during synaptic release is an essential step towards understanding the basic properties of inter-neuronal communication in the central nervous system. A variety of ingenious attempts has been made to gain insights into this process, but the general inaccessibility of central synapses, intrinsic limitations of the techniques used, and natural variety of different synaptic environments have hindered a comprehensive description of this fundamental phenomenon. Here, we describe a number of experimental and theoretical findings that has been instrumental for advancing our knowledge of various features of neurotransmitter release, as well as newly developed tools that could overcome some limits of traditional pharmacological approaches and bring new impetus to the description of the complex mechanisms of synaptic transmission

    Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015

    Get PDF
    SummaryBackground The Global Burden of Diseases, Injuries, and Risk Factors Study 2015 provides an up-to-date synthesis of the evidence for risk factor exposure and the attributable burden of disease. By providing national and subnational assessments spanning the past 25 years, this study can inform debates on the importance of addressing risks in context. Methods We used the comparative risk assessment framework developed for previous iterations of the Global Burden of Disease Study to estimate attributable deaths, disability-adjusted life-years (DALYs), and trends in exposure by age group, sex, year, and geography for 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks from 1990 to 2015. This study included 388 risk-outcome pairs that met World Cancer Research Fund-defined criteria for convincing or probable evidence. We extracted relative risk and exposure estimates from randomised controlled trials, cohorts, pooled cohorts, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. We developed a metric that allows comparisons of exposure across risk factors—the summary exposure value. Using the counterfactual scenario of theoretical minimum risk level, we estimated the portion of deaths and DALYs that could be attributed to a given risk. We decomposed trends in attributable burden into contributions from population growth, population age structure, risk exposure, and risk-deleted cause-specific DALY rates. We characterised risk exposure in relation to a Socio-demographic Index (SDI). Findings Between 1990 and 2015, global exposure to unsafe sanitation, household air pollution, childhood underweight, childhood stunting, and smoking each decreased by more than 25%. Global exposure for several occupational risks, high body-mass index (BMI), and drug use increased by more than 25% over the same period. All risks jointly evaluated in 2015 accounted for 57·8% (95% CI 56·6–58·8) of global deaths and 41·2% (39·8–42·8) of DALYs. In 2015, the ten largest contributors to global DALYs among Level 3 risks were high systolic blood pressure (211·8 million [192·7 million to 231·1 million] global DALYs), smoking (148·6 million [134·2 million to 163·1 million]), high fasting plasma glucose (143·1 million [125·1 million to 163·5 million]), high BMI (120·1 million [83·8 million to 158·4 million]), childhood undernutrition (113·3 million [103·9 million to 123·4 million]), ambient particulate matter (103·1 million [90·8 million to 115·1 million]), high total cholesterol (88·7 million [74·6 million to 105·7 million]), household air pollution (85·6 million [66·7 million to 106·1 million]), alcohol use (85·0 million [77·2 million to 93·0 million]), and diets high in sodium (83·0 million [49·3 million to 127·5 million]). From 1990 to 2015, attributable DALYs declined for micronutrient deficiencies, childhood undernutrition, unsafe sanitation and water, and household air pollution; reductions in risk-deleted DALY rates rather than reductions in exposure drove these declines. Rising exposure contributed to notable increases in attributable DALYs from high BMI, high fasting plasma glucose, occupational carcinogens, and drug use. Environmental risks and childhood undernutrition declined steadily with SDI; low physical activity, high BMI, and high fasting plasma glucose increased with SDI. In 119 countries, metabolic risks, such as high BMI and fasting plasma glucose, contributed the most attributable DALYs in 2015. Regionally, smoking still ranked among the leading five risk factors for attributable DALYs in 109 countries; childhood underweight and unsafe sex remained primary drivers of early death and disability in much of sub-Saharan Africa. Interpretation Declines in some key environmental risks have contributed to declines in critical infectious diseases. Some risks appear to be invariant to SDI. Increasing risks, including high BMI, high fasting plasma glucose, drug use, and some occupational exposures, contribute to rising burden from some conditions, but also provide opportunities for intervention. Some highly preventable risks, such as smoking, remain major causes of attributable DALYs, even as exposure is declining. Public policy makers need to pay attention to the risks that are increasingly major contributors to global burden. Funding Bill & Melinda Gates Foundation

    Establishing a primary care audit and feedback implementation laboratory: a consensus study

    Get PDF
    Background: There is a significant variation among individual primary care providers in prescribing of potentially problematic, low-value medicines which cause avoidable patient harm. Audit and feedback is generally effective at improving prescribing. However, progress has been hindered by research waste, leading to unanswered questions about how to include audit and feedback for specific problems and circumstances. Trials of different ways of providing audit and feedback in implementation laboratories have been proposed as a way of improving population healthcare while generating robust evidence on feedback effects. However, there is limited experience in their design and delivery. Aim: To explore priorities, feasibility, and ethical challenges of establishing a primary care prescribing audit and feedback implementation laboratory. Design and setting: Two-stage Delphi consensus process involving primary care pharmacy leads, audit and feedback researchers, and patient and public. Method: Participants initially scored statements relating to priorities, feasibility, and ethical considerations for an implementation laboratory. These covered current feedback practice, priority topics for feedback, usefulness of feedback in improving prescribing and different types of prescribing data, acceptability and desirability of different organization levels of randomization, options for trial consent, different methods of delivering feedback, and interest in finding out how effective different ways of presenting feedback would be. After receiving collated results, participants then scored the items again. The consensus was defined using the GRADE criteria. The results were analyzed by group and overall score. Results: Fourteen participants reached consensus for 38 out of 55 statements. Addressing antibiotic and opioid prescribing emerged as the highest priorities for action. The panel supported statements around addressing highpriority prescribing issues, taking an “opt-out” approach to practice consent if waiving consent was not permitted, and randomizing at lower rather than higher organizational levels. Participants supported patient-level prescribing data and further research evaluating most of the different feedback methods we presented them with. Conclusions: There is a good level of support for evaluating a wide range of potential enhancements to improve the effects of feedback on prescribing. The successful design and delivery of a primary care audit and feedback implementation laboratory depend on identifying shared priorities and addressing practical and ethical considerations

    Medicine is patriarchal, but alternative medicine is not the answer

    Get PDF
    Women are over-represented within alternative medicine, both as consumers and as service providers. In this paper, I show that the appeal of alternative medicine to women relates to the neglect of women’s health needs within scientific medicine. This is concerning because alternative medicine is severely limited in its therapeutic effects; therefore, those who choose alternative therapies are liable to experience inadequate healthcare. I argue that while many patients seek greater autonomy in alternative medicine, the absence of an evidence base and plausible mechanisms of action leaves patients unable to realize meaningful autonomy. This seems morally troubling, especially given that the neglect of women’s needs within scientific medicine seems to contribute to preferences for alternative medicine. I conclude that the liberatory credentials of alternative medicine should be questioned and make recommendations to render scientific medicine better able to meet the needs of typical alternative medicine consumers

    Synergistic interplay of Gβγ and phosphatidylinositol 4,5-bisphosphate dictates Kv7.4 channel activity.

    Get PDF
    Kv7.4 channels are key determinants of arterial contractility and cochlear mechanosensation that, like all Kv7 channels, have an obligatory requirement for phosphatidylinositol 4,5-bisphosphate (PIP2). βγ G proteins (Gβγ) have been identified as novel positive regulators of Kv7.4. The present study ascertained whether Gβγ increased Kv7.4 open probability through an increased sensitivity to PIP2. In HEK cells stably expressing Kv7.4, PIP2 or Gβγ increased open probability in a concentration dependent manner. Depleting PIP2 prevented any Gβγ-mediated stimulation whilst an array of Gβγ inhibitors prohibited any PIP2-induced current enhancement. A combination of PIP2 and Gβγ at sub-efficacious concentrations increased channel open probability considerably. The stimulatory effects of three Kv7.2-7.5 channel activators were also lost by PIP2 depletion or Gβγ inhibitors. This study alters substantially our understanding of the fundamental processes that dictate Kv7.4 activity, revealing a more complex and subtle paradigm where the reliance on local phosphoinositide is dictated by interaction with Gβγ

    Expression of two barley proteinase inhibitors in tomato promotes endogenous defensive response and enhances resistance to Tuta absoluta

    Get PDF
    [EN] Background: For as long as 350 million years, plants and insects have coexisted and developed a set of relationships which affect both organisms at different levels. Plants have evolved various morphological and biochemical adaptations to cope with herbivores attacks. However, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) has become the major pest threatening tomato crops worldwide and without the appropriated management it can cause production losses between 80 to 100%. Results: The aim of this study was to investigate the in vivo effect of a serine proteinase inhibitor (BTI-CMe) and a cysteine proteinase inhibitor (Hv-CPI2) from barley on this insect and to examine the effect their expression has on tomato defensive response. We found that larvae fed on the double transgenic plants showed a notable reduction in weight. Moreover, only 56% of the larvae reached the adult stage. The emerged adults showed wings deformities and reduced fertility. We also investigated the effect of proteinase inhibitors ingestion on the insect digestive enzymes. Our results showed a decrease in larval trypsin activity. Transgenes expression had no harmful effect on Nesidiocoris tenuis (Reuter) (Heteroptera: Miridae), a predator of Tuta absoluta, despite transgenic tomato plants attracted the mirid. We also found that barley cystatin expression promoted plant defense by inducing the expression of the tomato endogenous wound inducible Proteinase inhibitor 2 (Pin2) gene, increasing the production of glandular trichomes and altering the emission of volatile organic compounds. Conclusion: Our results demonstrate the usefulness of the co-expression of different proteinase inhibitors for the enhancement of plant resistance to Tuta absoluta.This work was partly supported by grants BIO2013-40747-R and AGL2014-55616-C3 from the Spanish Ministry of Economy and Competitiveness (MINECO)Hamza, R.; Pérez-Hedo, M.; Urbaneja, A.; Rambla Nebot, JL.; Granell Richart, A.; Gaddour, K.; Beltran Porter, JP.... (2018). Expression of two barley proteinase inhibitors in tomato promotes endogenous defensive response and enhances resistance to Tuta absoluta. BMC Plant Biology. 18. https://doi.org/10.1186/s12870-018-1240-6S18Oerke EC. Crop losses to pests. J Agric Sci. 2005;144(01):31.Jouanin L, Bonadé-Bottino M, Girard C, Morrot G, Giband M. Transgenic plants for insect resistance. Plant Sci. 1998;131(1):1–11.Markwick NP, Docherty LC, Phung MM, Lester MT, Murray C, Yao JL, Mitra DS, Cohen D, Beuning LL, Kutty-Amma S, et al. Transgenic tobacco and apple plants expressing biotin-binding proteins are resistant to two cosmopolitan insect pests, potato tuber moth and lightbrown apple moth, respectively. Transgenic Res. 2003;12(6):671–81.Koiwa H, Bressan RA, Hasegawa PM. Regulation of protease inhibitors and plant defense. Trends Plant Sci. 1997;2(10):379–84.Ryan CA. Protease inhibitors in plants: genes for improving defenses against insects and pathogens. Annu Rev Phytopathol. 1990;28(1):425–49.Abdeen A, Virgos A, Olivella E, Villanueva J, Aviles X, Gabarra R, Prat S. Multiple insect resistance in transgenic tomato plants over-expressing two families of plant proteinase inhibitors. Plant Mol Biol. 2005;57(2):189–202.Quilis J, López-García B, Meynard D, Guiderdoni E, San Segundo B. Inducible expression of a fusion gene encoding two proteinase inhibitors leads to insect and pathogen resistance in transgenic rice. Plant Biotechnol J. 2014;12(3):367–77.Smigocki AC, Ivic-Haymes S, Li H, Savic J. Pest protection conferred by a Beta vulgaris serine proteinase inhibitor gene. PLoS One. 2013;8(2):e57303.Mazumdar-Leighton S, Broadway RM. Transcriptional induction of diverse midgut trypsins in larval Agrotis ipsilon and Helicoverpa zea feeding on the soybean trypsin inhibitor. Insect Biochem Mol Biol. 2001;31(6–7):645–57.Oppert B, Morgan TD, Hartzer K, Kramer KJ. Compensatory proteolytic responses to dietary proteinase inhibitors in the red flour beetle, Tribolium castaneum (Coleoptera: Tenebrionidae). Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology. 2005;140(1):53–8.Broadway RM. Dietary regulation of serine proteinases that are resistant to serine proteinase inhibitors. J Insect Physiol. 1997;43(9):855–74.Zhu-Salzman K, Koiwa H, Salzman R, Shade R, Ahn JE. Cowpea bruchid Callosobruchus maculatus uses a three-component strategy to overcome a plant defensive cysteine protease inhibitor. Insect Mol Biol. 2003;12(2):135–45.Oppert B, Morgan TD, Hartzer K, Lenarcic B, Galesa K, Brzin J, Turk V, Yoza K, Ohtsubo K, Kramer KJ. Effects of proteinase inhibitors on digestive proteinases and growth of the red flour beetle, Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). Comparative biochemistry and physiology Toxicology & pharmacology : CBP. 2003;134(4):481–90.Duan X, Li X, Xue Q, Abo-El-Saad M, Xu D, Wu R. Transgenic rice plants harboring an introduced potato proteinase inhibitor II gene are insect resistant. Nat Biotechnol. 1996;14(4):494–8.Pompermayer P, Lopes AR, Terra WR, Parra JRP, Falco MC, Silva-Filho MC. Effects of soybean proteinase inhibitor on development, survival and reproductive potential of the sugarcane borer, Diatraea saccharalis. Entomologia Experimentalis et Applicata. 2001;99(1):79–85.Alfonso-Rubí J, Ortego F, Castañera P, Carbonero P, Díaz I. Transgenic expression of trypsin inhibitor CMe from barley in indica and japonica rice, confers resistance to the rice weevil Sitophilus oryzae. Transgenic Res. 2003;12(1):23–31.Altpeter F, Diaz I, Mc Auslane H, Gaddour K, Carbonero P, Vasil IK. Increased insect resistance in transgenic wheat stably expressing trypsin inhibitor CMe. Mol Breed. 1999;5(1):53–63.Martinez M, Cambra I, Carrillo L, Diaz-Mendoza M, Diaz I. Characterization of the entire cystatin gene family in barley and their target cathepsin L-like cysteine-proteases, partners in the hordein mobilization during seed germination. Plant Physiol. 2009;151(3):1531–45.FAOSTAT: Food and Organization of the United Nations, statistics division. 2017.Mueller LA, Lankhorst RK, Tanksley SD, Giovannoni JJ, White R, Vrebalov J, Fei Z, van Eck J, Buels R, Mills AA, et al. A snapshot of the emerging tomato genome sequence. The Plant Genome. 2009;2(1):78–92.Ellul P, Garcia-Sogo B, Pineda B, Rios G, Roig L, Moreno V. The ploidy level of transgenic plants in agrobacterium-mediated transformation of tomato cotyledons (Lycopersicon esculentum L. mill.) is genotype and procedure dependent. Theor Appl Genet. 2003;106(2):231–8.Pino LE, Lombardi-Crestana S, Azevedo MS, Scotton DC, Borgo L, Quecini V, Figueira A, Peres LE. The Rg1 allele as a valuable tool for genetic transformation of the tomato'Micro-Tom'model system. Plant Methods. 2010;6(1):23.Sharma MK, Solanke AU, Jani D, Singh Y, Sharma AK. A simple and efficient agrobacterium-mediated procedure for transformation of tomato. J Biosci. 2009;34(3):423–33.van Eck J, Kirk DD, Walmsley AM. Tomato (Lycopersicum esculentum). Agrobacterium Protocols. 2006:459–74.Dan Y, Yan H, Munyikwa T, Dong J, Zhang Y, Armstrong CL. MicroTom—a high-throughput model transformation system for functional genomics. Plant Cell Rep. 2006;25(5):432–41.Pearce G, Strydom D, Johnson S, Ryan CA. A polypeptide from tomato leaves induces wound-inducible proteinase inhibitor proteins. Science. 1991;253(5022):895–9.Farmer EE, Ryan CA. Interplant communication: airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves. Proc Natl Acad Sci. 1990;87(19):7713–6.Bosch M, Wright LP, Gershenzon J, Wasternack C, Hause B, Schaller A, Stintzi A. Jasmonic acid and its precursor 12-oxophytodienoic acid control different aspects of constitutive and induced herbivore defenses in tomato. Plant Physiol. 2014;166(1):396–410.Christensen SA, Nemchenko A, Borrego E, Murray I, Sobhy IS, Bosak L, DeBlasio S, Erb M, Robert CA, Vaughn KA. The maize lipoxygenase, ZmLOX10, mediates green leaf volatile, jasmonate and herbivore-induced plant volatile production for defense against insect attack. Plant J. 2013;74(1):59–73.Boughton AJ, Hoover K, Felton GW. Methyl jasmonate application induces increased densities of glandular trichomes on tomato, Lycopersicon esculentum. J Chem Ecol. 2005;31(9):2211–6.Li L, Zhao Y, McCaig BC, Wingerd BA, Wang J, Whalon ME, Pichersky E, Howe GA. The tomato homolog of CORONATINE-INSENSITIVE1 is required for the maternal control of seed maturation, jasmonate-signaled defense responses, and glandular trichome development. Plant Cell. 2004;16(1):126–43.Peiffer M, Tooker JF, Luthe DS, Felton GW. Plants on early alert: glandular trichomes as sensors for insect herbivores. New Phytol. 2009;184(3):644–56.Bryant J, Green TR, Gurusaddaiah T, Ryan CA. Proteinase inhibitor II from potatoes: isolation and characterization of its protomer components. Biochemistry. 1976;15(16):3418–24.Johnson R, Narvaez J, An G, Ryan C. Expression of proteinase inhibitors I and II in transgenic tobacco plants: effects on natural defense against Manduca sexta larvae. Proc Natl Acad Sci. 1989;86(24):9871–5.Klopfenstein NB, Allen KK, Avila FJ, Heuchelin SA, Martinez J, Carman RC, Hall RB, Hart ER, McNabb HS. Proteinase inhibitor II gene in transgenic poplar: chemical and biological assays. Biomass Bioenergy. 1997;12(4):299–311.Dicke M, Takabayashi J, Posthumus MA, Schütte C, Krips OE. Plant—Phytoseiid interactions mediated by herbivore-induced plant volatiles: variation in production of cues and in responses of predatory mites. Exp Appl Acarol. 1998;22(6):311–33.Turlings T, Loughrin JH, Mccall PJ, Röse U, Lewis WJ, Tumlinson JH. How caterpillar-damaged plants protect themselves by attracting parasitic wasps. Proc Natl Acad Sci. 1995;92(10):4169–74.Levin DA. The role of trichomes in plant defense. Q Rev Biol. 1973;48(1, Part 1):3–15.Traw BM, Dawson TE. Differential induction of trichomes by three herbivores of black mustard. Oecologia. 2002;131(4):526–32.Handley R, Ekbom B, Ågren J. Variation in trichome density and resistance against a specialist insect herbivore in natural populations of Arabidopsis thaliana. Ecological Entomology. 2005;30(3):284–92.Valverde P, Fornoni J, NÚÑez-Farfán J. Defensive role of leaf trichomes in resistance to herbivorous insects in Datura stramonium. J Evol Biol. 2001;14(3):424–32.Elle E, Hare J. Environmentally induced variation in floral traits affects the mating system in Datura wrightii. Funct Ecol. 2002;16(1):79–88.Agrawal AA. Benefits and costs of induced plant defense for Lepidium virginicum (Brassicaceae). Ecology. 2000;81(7):1804–13.Dalin P, Björkman C. Adult beetle grazing induces willow trichome defence against subsequent larval feeding. Oecologia. 2003;134(1):112–8.Campos MR, Biondi A, Adiga A, Guedes RN, Desneux N. From the western Palaearctic region to beyond: Tuta absoluta 10 years after invading Europe. J Pest Sci. 2017:1–10.Desneux N, Wajnberg E, Wyckhuys KA, Burgio G, Arpaia S, Narváez-Vasquez CA, González-Cabrera J, Ruescas DC, Tabone E, Frandon J. Biological invasion of European tomato crops by Tuta absoluta: ecology, geographic expansion and prospects for biological control. J Pest Sci. 2010;83(3):197–215.Urbaneja A, Montón H, Mollá O. Suitability of the tomato borer Tuta absoluta as prey for Macrolophus pygmaeus and Nesidiocoris tenuis. J Appl Entomol. 2009;133(4):292–6.Pérez-Hedo M, Urbaneja A. Prospects for predatory mirid bugs as biocontrol agents of aphids in sweet peppers. J Pest Sci. 2015;88(1):65–73.Hewitt E. The composition of the nutrient solution. Sand and water culture methods used in the study of plant Nutrition. 1966:187–246.Karimi M, Inzé D, Depicker A. GATEWAY™ vectors for agrobacterium-mediated plant transformation. Trends Plant Sci. 2002;7(5):193–5.Martín-Trillo M, Grandío EG, Serra F, Marcel F, Rodríguez-Buey ML, Schmitz G, Theres K, Bendahmane A, Dopazo H, Cubas P. Role of tomato BRANCHED1-like genes in the control of shoot branching. Plant J. 2011;67(4):701–14.Vargas C. Observations on the bionomics and natural enemies of the tomato moth, Gnorimoschema absoluta (Meyrick)(Lep. Gelechiidae). Idesia. 1970;1:75–110.Mollá O, Biondi A, Alonso-Valiente M, Urbaneja A. A comparative life history study of two mirid bugs preying on Tuta absoluta and Ephestia kuehniella eggs on tomato crops: implications for biological control. BioControl. 2014;59(2):175–83.Abbot C. Solar variation and the weather. Science (New York, NY). 1925;62(1605):307.Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72(1–2):248–54.Bouagga S, Urbaneja A, Rambla JL, Granell A, Pérez-Hedo M. Orius laevigatus strengthens its role as a biological control agent by inducing plant defenses. J Pest Sci. 2017:1–10.Hilder VA, Gatehouse AM, Sheerman SE, Barker RF, Boulter D. A novel mechanism of insect resistance engineered into tobacco. Nature. 1987;330(6144):160–3.Saikia K, Kalita J, Saikia PK. Biology and life cycle generations of common crow–Euploea core core Cramer (Lepidoptera: Danainae) on Hemidesmus indica host plant. Int J NeBIO. 2010;1(3):28–37.Srinivasan A, Giri AP, Gupta VS. Structural and functional diversities in lepidopteran serine proteases. Cellular & molecular biology letters. 2006;11(1):132.Tamhane VA, Chougule NP, Giri AP, Dixit AR, Sainani MN, Gupta VS. In vivo and in vitro effect of Capsicum annum proteinase inhibitors on Helicoverpa armigera gut proteinases. Biochimica et Biophysica Acta (BBA)-General Subjects. 2005;1722(2):156–67.Telang M, Srinivasan A, Patankar A, Harsulkar A, Joshi V, Damle A, Deshpande V, Sainani M, Ranjekar P, Gupta G. Bitter gourd proteinase inhibitors: potential growth inhibitors of Helicoverpa armigera and Spodoptera litura. Phytochemistry. 2003;63(6):643–52.Damle MS, Giri AP, Sainani MN, Gupta VS. Higher accumulation of proteinase inhibitors in flowers than leaves and fruits as a possible basis for differential feeding preference of Helicoverpa armigera on tomato (Lycopersicon esculentum mill, cv. Dhanashree). Phytochemistry. 2005;66(22):2659–67.De Leo F, Bonadé-Bottino MA, Ceci LR, Gallerani R, Jouanin L. Opposite effects on spodoptera littoralis larvae of high expression level of a trypsin proteinase inhibitor in transgenic plants. Plant Physiol. 1998;118(3):997–1004.Rahbé Y, Ferrasson E, Rabesona H, Quillien L. Toxicity to the pea aphid Acyrthosiphon pisum of anti-chymotrypsin isoforms and fragments of Bowman–Birk protease inhibitors from pea seeds. Insect Biochem Mol Biol. 2003;33(3):299–306.Luo M, Ding L-W, Ge Z-J, Wang Z-Y, Hu B-L, Yang X-B, Sun Q-Y, Xu Z-F. The characterization of SaPIN2b, a plant trichome-localized proteinase inhibitor from Solanum americanum. Int J Mol Sci. 2012;13(11):15162–76.Dalin P, Ågren J, Björkman C, Huttunen P, Kärkkäinen K. Leaf trichome formation and plant resistance to herbivory. In: Dordrecht SA, editor. Induced plant resistance to herbivory. Netherlands: Springer; 2008. p. 89–105.Gonzáles WL, Negritto MA, Suárez LH, Gianoli E. Induction of glandular and non-glandular trichomes by damage in leaves of Madia sativa under contrasting water regimes. Acta Oecol. 2008;33(1):128–32.Luo M, Wang Z, Li H, Xia K-F, Cai Y, Xu Z-F. Overexpression of a weed (Solanum americanum) proteinase inhibitor in transgenic tobacco results in increased glandular trichome density and enhanced resistance to Helicoverpa armigera and Spodoptera litura. Int J Mol Sci. 2009;10(4):1896–910.Björkman C, Dalin P, Ahrné K. Leaf trichome responses to herbivory in willows: induction, relaxation and costs. New Phytol. 2008;179(1):176–84.Duffey S. Plant glandular trichomes: their partial role in defence against insects. Insects and the plant surface. London: Edward Arnold; 1986. p. 151–72.James DG. Further field evaluation of synthetic herbivore-induced plan volatiles as attractants for beneficial insects. J Chem Ecol. 2005;31(3):481–95.Naselli M, Zappalà L, Gugliuzzo A, Garzia GT, Biondi A, Rapisarda C, Cincotta F, Condurso C, Verzera A, Siscaro G. Olfactory response of the zoophytophagous mirid Nesidiocoris tenuis to tomato and alternative host plants. Arthropod Plant Interact. 2017;11(2):121–31.Tholl D. Biosynthesis and biological functions of terpenoids in plants. Advances in Biochemical Engineering and Biotechnology. 2015;148:63-106.Lange BM, Rujan T, Martin W, Croteau R. Isoprenoid biosynthesis: the evolution of two ancient and distinct pathways across genomes. Proc Natl Acad Sci. 2000;97(24):13172–7.Dudareva N, Klempien A, Muhlemann JK, Kaplan I. Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytol. 2013;198(1):16–32.Razal RA, Ellis S, Singh S, Lewis NG, Towers GHN. Nitrogen recycling in phenylpropanoid metabolism. Phytochemistry. 1996;41(1):31–5.Effmert U, Große J, Röse US, Ehrig F, Kägi R, Piechulla B. Volatile composition, emission pattern, and localization of floral scent emission in Mirabilis jalapa (Nyctaginaceae). Am J Bot. 2005;92(1):2–12.Guterman I, Masci T, Chen X, Negre F, Pichersky E, Dudareva N, Weiss D, Vainstein A. Generation of phenylpropanoid pathway-derived volatiles in transgenic plants: rose alcohol acetyltransferase produces phenylethyl acetate and benzyl acetate in petunia flowers. Plant Mol Biol. 2006;60(4):555–63.Vogel JT, Tan B-C, McCarty DR, Klee HJ. The carotenoid cleavage dioxygenase 1 enzyme has broad substrate specificity, cleaving multiple carotenoids at two different bond positions. J Biol Chem. 2008;283(17):11364–73.Colquhoun TA, Kim JY, Wedde AE, Levin LA, Schmitt KC, Schuurink RC, Clark DG. PhMYB4 fine-tunes the floral volatile signature of petunia×hybrida through PhC4H. J Exp Bot. 2011;62(3):1133–43.Kolosova N, Gorenstein N, Kish CM, Dudareva N. Regulation of circadian methyl benzoate emission in diurnally and nocturnally emitting plants. Plant Cell. 2001;13(10):2333–47.Maeda H, Shasany AK, Schnepp J, Orlova I, Taguchi G, Cooper BR, Rhodes D, Pichersky E, Dudareva N. RNAi suppression of arogenate dehydratase1 reveals that phenylalanine is synthesized predominantly via the arogenate pathway in petunia petals. Plant Cell. 2010;22(3):832–49.Lerdau M, Gray D. Ecology and evolution of light-dependent and light-independent phytogenic volatile organic carbon. New Phytol. 2003;157(2):199–211.Martin DM, Gershenzon J, Bohlmann J. Induction of volatile terpene biosynthesis and diurnal emission by methyl jasmonate in foliage of Norway spruce. Plant Physiol. 2003;132(3):1586–99.van Doorn WG, Woltering EJ. Physiology and molecular biology of petal senescence. J Exp Bot. 2008;59(3):453–80
    corecore