744 research outputs found
MHD simulations of the solar photosphere
We briefly review the observations of the solar photosphere and pinpoint some
open questions related to the magnetohydrodynamics of this layer of the Sun. We
then discuss the current modelling efforts, addressing among other problems,
that of the origin of supergranulation.Comment: 10 pages, 6 figures; 4th French-Chinese Meeting on Solar Physics
Understanding Solar Activity: Advances and Challenges, 4th French-Chinese,
Nice, Franc
Tracking granules on the Sun's surface and reconstructing horizontal velocity fields: I. the CST algorithm
Determination of horizontal velocity fields on the solar surface is crucial
for understanding the dynamics of structures like mesogranulation or
supergranulation or simply the distribution of magnetic fields.
We pursue here the development of a method called CST for coherent structure
tracking, which determines the horizontal motion of granules in the field of
view.
We first devise a generalization of Strous method for the segmentation of
images and show that when segmentation follows the shape of granules more
closely, granule tracking is less effective for large granules because of
increased sensitivity to granule fragmentation. We then introduce the
multi-resolution analysis on the velocity field, based on Daubechies wavelets,
which provides a view of this field on different scales. An algorithm for
computing the field derivatives, like the horizontal divergence and the
vertical vorticity, is also devised. The effects from the lack of data or from
terrestrial atmospheric distortion of the images are also briefly discussed.Comment: in press in Astronomy and Astrophysics, 9 page
Tracking granules at the Sun's surface and reconstructing velocity fields. II. Error analysis
The determination of horizontal velocity fields at the solar surface is
crucial to understanding the dynamics and magnetism of the convection zone of
the sun. These measurements can be done by tracking granules.
Tracking granules from ground-based observations, however, suffers from the
Earth's atmospheric turbulence, which induces image distortion. The focus of
this paper is to evaluate the influence of this noise on the maps of velocity
fields.
We use the coherent structure tracking algorithm developed recently and apply
it to two independent series of images that contain the same solar signal.
We first show that a k-\omega filtering of the times series of images is
highly recommended as a pre-processing to decrease the noise, while, in
contrast, using destretching should be avoided. We also demonstrate that the
lifetime of granules has a strong influence on the error bars of velocities and
that a threshold on the lifetime should be imposed to minimize errors. Finally,
although solar flow patterns are easily recognizable and image quality is very
good, it turns out that a time sampling of two images every 21 s is not
frequent enough, since image distortion still pollutes velocity fields at a 30%
level on the 2500 km scale, i.e. the scale on which granules start to behave
like passive scalars.
The coherent structure tracking algorithm is a useful tool for noise control
on the measurement of surface horizontal solar velocity fields when at least
two independent series are available.Comment: in press in Astronomy and Astrophysics, 9 page
A simulation of solar convection at supergranulation scale
We present here numerical simulations of surface solar convection which cover
a box of 303.2 Mm with a resolution of
31582, which is used to investigate the dynamics of scales
larger than granulation. No structure resembling supergranulation is present;
possibly higher Reynolds numbers (i.e. higher numerical resolution), or
magnetic fields, or greater depth are necessary. The results also show
interesting aspects of granular dynamics which are briefly presented, like
extensive p-mode ridges in the k- diagram and a ringlike distribution
of horizontal vorticity around granules. At large scales, the horizontal
velocity is much larger than the vertical velocity and the vertical motion is
dominated by p-mode oscillations.Comment: Contribution to the proceedings of the workshop entitled "THEMIS and
the new frontiers of solar atmosphere dynamics" (March 2001), 6 pages, to
appear in Nuovo Cimento
The Role of Subsurface Flows in Solar Surface Convection: Modeling the Spectrum of Supergranular and Larger Scale Flows
We model the solar horizontal velocity power spectrum at scales larger than
granulation using a two-component approximation to the mass continuity
equation. The model takes four times the density scale height as the integral
(driving) scale of the vertical motions at each depth. Scales larger than this
decay with height from the deeper layers. Those smaller are assumed to follow a
Kolomogorov turbulent cascade, with the total power in the vertical convective
motions matching that required to transport the solar luminosity in a mixing
length formulation. These model components are validated using large scale
radiative hydrodynamic simulations. We reach two primary conclusions: 1. The
model predicts significantly more power at low wavenumbers than is observed in
the solar photospheric horizontal velocity spectrum. 2. Ionization plays a
minor role in shaping the observed solar velocity spectrum by reducing
convective amplitudes in the regions of partial helium ionization. The excess
low wavenumber power is also seen in the fully nonlinear three-dimensional
radiative hydrodynamic simulations employing a realistic equation of state.
This adds to other recent evidence suggesting that the amplitudes of large
scale convective motions in the Sun are significantly lower than expected.
Employing the same feature tracking algorithm used with observational data on
the simulation output, we show that the observed low wavenumber power can be
reproduced in hydrodynamic models if the amplitudes of large scale modes in the
deep layers are artificially reduced. Since the large scale modes have reduced
amplitudes, modes on the scale of supergranulation and smaller remain important
to convective heat flux even in the deep layers, suggesting that small scale
convective correlations are maintained through the bulk of the solar convection
zone.Comment: 36 pages, 6 figure
Mesoscale dynamics on the Sun's surface from HINODE observations
Aims: The interactions of velocity scales on the Sun's surface, from
granulation to supergranulation are still not understood, nor are their
interaction with magnetic fields. We thus aim at giving a better description of
dynamics in the mesoscale range which lies between the two scales mentioned
above. Method: We analyse a 48h high-resolution time sequence of the quiet Sun
photosphere at the disk center obtained with the Solar Optical Telescope
onboard Hinode. The observations, which have a field of view of 100
\arcsec 100 \arcsec, typically contain four supergranules. We monitor
in detail the motion and evolution of granules as well as those of the radial
magnetic field. Results: This analysis allows us to better characterize Trees
of Fragmenting Granules issued from repeated fragmentation of granules,
especially their lifetime statistics. Using floating corks advected by measured
velocity fields, we show their crucial role in the advection of the magnetic
field and in the build up of the network. Finally, thanks to the long duration
of the time series, we estimate that the turbulent diffusion coefficient
induced by horizontal motion is approximately . Conclusions: These results demonstrate that the long living
families contribute to the formation of the magnetic network and suggest that
supergranulation could be an emergent length scale building up as small
magnetic elements are advected and concentrated by TFG flows. Our estimate for
the magnetic diffusion associated with this horizontal motion might provide a
useful input for mean-field dynamo models.Comment: to appear in A&A - 8 pages, 13 figures (degraded quality) - Full
resolution version available @
http://www.ast.obs-mip.fr/users/rincon/hinode_roudier_aa09.pd
Are granules good tracers of solar surface velocity fields?
Using a numerical simulation of compressible convection with radiative
transfer mimicking the solar photosphere, we compare the velocity field derived
from granule motions to the actual velocity field of the plasma. We thus test
the idea that granules may be used to trace large-scale velocity fields at the
sun's surface. Our results show that this is indeed the case provided the scale
separation is sufficient. We thus estimate that neither velocity fields at
scales less than 2500 km nor time evolution at scales shorter than 0.5 hr can
be faithfully described by granules. At larger scales the granular motions
correlate linearly with the underlying fluid motions with a slope of ~< 2
reaching correlation coefficients up to ~0.9.Comment: 4 pages - accepted in Astronomy and Astrophysic
Quasi full-disk maps of solar horizontal velocities using SDO/HMI data
For the first time, the motion of granules (solar plasma on the surface on
scales larger than 2.5 Mm) has been followed over the entire visible surface of
the Sun, using SDO/HMI white-light data.
Horizontal velocity fields are derived from image correlation tracking using
a new version of the coherent structure tracking algorithm.The spatial and
temporal resolutions of the horizontal velocity map are 2.5 Mm and 30 min
respectively .
From this reconstruction, using the multi-resolution analysis, one can obtain
to the velocity field at different scales with its derivatives such as the
horizontal divergence or the vertical component of the vorticity. The intrinsic
error on the velocity is ~0.25 km/s for a time sequence of 30 minutes and a
mesh size of 2.5 Mm.This is acceptable compared to the granule velocities,
which range between 0.3 km/s and 1.8 km/s. A high correlation between
velocities computed from Hinode and SDO/HMI has been found (85%). From the data
we derive the power spectrum of the supergranulation horizontal velocity field,
the solar differential rotation, and the meridional velocity.Comment: 8 pages, 11 figures, accepted in Astronomy and Astrophysic
- …