7 research outputs found

    A high-throughput sequencing test for diagnosing inherited bleeding, thrombotic, and platelet disorders.

    Get PDF
    Inherited bleeding, thrombotic, and platelet disorders (BPDs) are diseases that affect ∼300 individuals per million births. With the exception of hemophilia and von Willebrand disease patients, a molecular analysis for patients with a BPD is often unavailable. Many specialized tests are usually required to reach a putative diagnosis and they are typically performed in a step-wise manner to control costs. This approach causes delays and a conclusive molecular diagnosis is often never reached, which can compromise treatment and impede rapid identification of affected relatives. To address this unmet diagnostic need, we designed a high-throughput sequencing platform targeting 63 genes relevant for BPDs. The platform can call single nucleotide variants, short insertions/deletions, and large copy number variants (though not inversions) which are subjected to automated filtering for diagnostic prioritization, resulting in an average of 5.34 candidate variants per individual. We sequenced 159 and 137 samples, respectively, from cases with and without previously known causal variants. Among the latter group, 61 cases had clinical and laboratory phenotypes indicative of a particular molecular etiology, whereas the remainder had an a priori highly uncertain etiology. All previously detected variants were recapitulated and, when the etiology was suspected but unknown or uncertain, a molecular diagnosis was reached in 56 of 61 and only 8 of 76 cases, respectively. The latter category highlights the need for further research into novel causes of BPDs. The ThromboGenomics platform thus provides an affordable DNA-based test to diagnose patients suspected of having a known inherited BPD.This study, including the enrollment of cases, sequencing, and analysis received support from the National Institute for Health Research (NIHR) BioResource–Rare Diseases. The NIHR BioResource is funded by the NIHR (http://www.nihr.ac.uk). Research in the Ouwehand Laboratory is also supported by grants from Bristol-Myers Squibb, the British Heart Foundation, the British Society of Haematology, the European Commission, the MRC, the NIHR, and the Wellcome Trust; the laboratory also receives funding from National Health Service Blood and Transplant (NHSBT). The clinical fellows received funding from the MRC (C.L. and S.K.W.); the NIHR–Rare Diseases Translational Research Collaboration (S. Sivapalaratnam); and the British Society for Haematology and National Health Service Blood and Transplant (T.K.B.).This is the author accepted manuscript. The final version is available from American Society of Hematology via http://dx.doi.org/10.1182/blood-2015-12-688267

    Regulation of Cl− secretion by α2-adrenergic receptors in mouse colonic epithelium

    No full text
    Previous studies have shown that α2 adrenoceptor (α2AR) agonists inhibit electrolyte secretion in colonic epithelia, but little is known about the molecular mechanisms involved in this process. In this study we examined the effect of α2AR activation on transepithelial anion secretion across isolated murine colonic epithelium. We found that α2AR agonists, UK 14,304, clonidine and medetomidine were potent inhibitors of anion secretion, especially in the proximal colon. Short circuit current measurements (Isc) in colonic epithelia from normal and cystic fibrosis (CF) mice showed that α2AR agonists inhibited basal cystic fibrosis transmembrane conductance regulator (CFTR)-mediated Cl− secretion but had no effect on CFTR activation by cAMP-dependent phosphorylation. Apical administration of an ionophore, nystatin (90 μg ml−1), was used to investigate the effect of UK 14,304 on basolateral K+ transport. The Na+–K+-ATPase current, measured as ouabain-sensitive current in the absence of ion gradients, was unaltered by pretreatment of the tissue with UK 14,304 (1 μm). In the presence of a basolaterally directed K+ gradient, UK 14,304 significantly reduced nystatin-activated Isc indicating that activation of α2ARs inhibits basolateral K+ channels. Studies with selective K+ channel inhibitors and openers showed that α2AR agonists inhibited KATP channels that were tonically active in mouse colonic epithelia. RT-PCR and pharmacological studies suggested that these channels could be similar to vascular smooth muscle KATP channels comprising Kir6.1/SUR2B or Kir6.2/SUR2B subunits. Inhibition of anion secretion by α2AR agonists required activation of pertussis toxin-sensitive Gi/o proteins, but did not involve classical second messengers, such as cAMP or Ca2+. In summary, α2ARs inhibit anion secretion in colonic epithelia by acting on basolateral KATP channels, through a process that does not involve classical second messengers

    A comprehensive high-throughput sequencing test for the diagnosis of inherited bleeding, thrombotic and platelet disorders

    No full text
    Inherited bleeding, thrombotic, and platelet disorders (BPDs) are diseases that affect ∼300 individuals per million births. With the exception of hemophilia and von Willebrand disease patients, a molecular analysis for patients with a BPD is often unavailable. Many specialized tests are usually required to reach a putative diagnosis and they are typically performed in a step-wise manner to control costs. This approach causes delays and a conclusive molecular diagnosis is often never reached, which can compromise treatment and impede rapid identification of affected relatives. To address this unmet diagnostic need, we designed a high-throughput sequencing platform targeting 63 genes relevant for BPDs. The platform can call single nucleotide variants, short insertions/deletions, and large copy number variants (though not inversions) which are subjected to automated filtering for diagnostic prioritization, resulting in an average of 5.34 candidate variants per individual. We sequenced 159 and 137 samples, respectively, from cases with and without previously known causal variants. Among the latter group, 61 cases had clinical and laboratory phenotypes indicative of a particular molecular etiology, whereas the remainder had an a priori highly uncertain etiology. All previously detected variants were recapitulated and, when the etiology was suspected but unknown or uncertain, a molecular diagnosis was reached in 56 of 61 and only 8 of 76 cases, respectively. The latter category highlights the need for further research into novel causes of BPDs. The ThromboGenomics platform thus provides an affordable DNA-based test to diagnose patients suspected of having a known inherited BPD.This study, including the enrollment of cases, sequencing, and analysis received support from the National Institute for Health Research (NIHR) BioResource–Rare Diseases. The NIHR BioResource is funded by the NIHR (http://www.nihr.ac.uk). Research in the Ouwehand Laboratory is also supported by grants from Bristol-Myers Squibb, the British Heart Foundation, the British Society of Haematology, the European Commission, the MRC, the NIHR, and the Wellcome Trust; the laboratory also receives funding from National Health Service Blood and Transplant (NHSBT). The clinical fellows received funding from the MRC (C.L. and S.K.W.); the NIHR–Rare Diseases Translational Research Collaboration (S. Sivapalaratnam); and the British Society for Haematology and National Health Service Blood and Transplant (T.K.B.).This is the author accepted manuscript. The final version is available from American Society of Hematology via http://dx.doi.org/10.1182/blood-2015-12-688267

    A comprehensive high-throughput sequencing test for the diagnosis of inherited bleeding, thrombotic and platelet disorders

    No full text
    Inherited bleeding, thrombotic and platelet disorders (BPDs) are diseases affecting approximately 300 individuals per million births. With the exception of haemophilia and von Willebrand disease patients, a molecular analysis for patients with a BPD is often unavailable. Many specialised tests are usually required to reach a putative diagnosis and they are typically performed in a step-wise manner to control costs. This approach causes delays and a conclusive molecular diagnosis is often never reached which can compromise treatment and impede rapid identification of affected relatives. To address this unmet diagnostic need, we designed a high-throughput sequencing (HTS) platform targeting 63 genes relevant for BPDs. The platform can call single nucleotide variants (SNVs), short insertions/deletions (indels) and large copy number variants (CNVs), though not inversions, which are subjected to automated filtering for diagnostic prioritization, resulting in an average of 5.34 candidate variants per individual. We sequenced 159 and 137 samples respectively from cases with and without previously known causal variants. Among the latter group, 61 cases had clinical and laboratory phenotypes indicative of a particular molecular etiology while the remainder had ana priorihighly uncertain etiology. All previously detected variants were recapitulated and, when the etiology was suspected but unknown or uncertain, a molecular diagnosis was reached in 56 of 61 and only eight of 76 cases, respectively. The latter category highlights the need for further research into novel causes of BPDs. The ThromboGenomics platform thus provides an affordable DNA-based test to diagnose patients suspected of having a known inherited BPD.status: publishe
    corecore