964 research outputs found

    Uncertainty and sensitivity analysis in quantitative pest risk assessments : practical rules for risk assessors

    Get PDF
    Quantitative models have several advantages compared to qualitative methods for pest risk assessments (PRA). Quantitative models do not require the definition of categorical ratings and can be used to compute numerical probabilities of entry and establishment, and to quantify spread and impact. These models are powerful tools, but they include several sources of uncertainty that need to be taken into account by risk assessors and communicated to decision makers. Uncertainty analysis (UA) and sensitivity analysis (SA) are useful for analyzing uncertainty in models used in PRA, and are becoming more popular. However, these techniques should be applied with caution because several factors may influence their results. In this paper, a brief overview of methods of UA and SA are given. As well, a series of practical rules are defined that can be followed by risk assessors to improve the reliability of UA and SA results. These rules are illustrated in a case study based on the infection model of Magarey et al. (2005) where the results of UA and SA are shown to be highly dependent on the assumptions made on the probability distribution of the model inputs

    A Metapopulation Model for Chikungunya Including Populations Mobility on a Large-Scale Network

    Full text link
    In this work we study the influence of populations mobility on the spread of a vector-borne disease. We focus on the chikungunya epidemic event that occurred in 2005-2006 on the R\'eunion Island, Indian Ocean, France, and validate our models with real epidemic data from the event. We propose a metapopulation model to represent both a high-resolution patch model of the island with realistic population densities and also mobility models for humans (based on real-motion data) and mosquitoes. In this metapopulation network, two models are coupled: one for the dynamics of the mosquito population and one for the transmission of the disease. A high-resolution numerical model is created out from real geographical, demographical and mobility data. The Island is modeled with an 18 000-nodes metapopulation network. Numerical results show the impact of the geographical environment and populations' mobility on the spread of the disease. The model is finally validated against real epidemic data from the R\'eunion event.Comment: Accepted in Journal of Theoretical biolog

    Red Imported Fire Ant in Australia: What if we lose the war?

    Get PDF
    In Australia, a national eradication programme for the Red Imported Fire Ant (Solenopsis invicta Buren), one of the world's most invasive species, has been in operation since 2001 when the pest was first detected in Brisbane, Queensland. Since that time, four separate incursions of this ant have been successfully eradicated from this country, but the main Brisbane population remains. Cost-benefit analyses already conducted put the likely impact of Red Imported Fire Ant in Australia, if not eradicated, at between A8.5andA8.5 and A45 billion. Despite this, ongoing funding for the eradication programme is not assured. A recent external review has concluded that it remains technically feasible, cost beneficial and in the national interest to eradicate. In support of previous analyses, our study highlights some of the potential impacts of Red Imported Fire Ant in Australia in more detail and provides case examples. Results show that adverse impacts are likely in most sectors of the economy, and will be felt not only by agricultural industries, but also the building and construction, tourism, electrical and communications industries. In addition to industry effects, there will also be negative impacts on public health and lifestyle, the environment and infrastructure such as main roads, airports and schools. Our estimates of potential cost impacts in the case examples where extrapolation was possible exceed A$1.65 billion/year and support previous predictions. We conclude that increased spending is justified to avert ‘invasion debt’ – the future cost of battling pests that escape today. This is a war that Australia cannot afford to lose

    Future climate effects on suitability for growth of oil palms in Malaysia and Indonesia

    Get PDF
    The production of palm oil (PO) is highly profitable. The economies of the principal producers, Malaysia and Indonesia, and others, benefit considerably. Climate change (CC) will most likely have an impact on the distribution of oil palms (OP) (Elaeis guineensis). Here we present modelled CC projections with respect to the suitability of growing OP, in Malaysia and Indonesia. A process-oriented niche model of OP was developed using CLIMEX to estimate its potential distribution under current and future climate scenarios. Two Global Climate Models (GCMs), CSIRO-Mk3.0 and MIROC-H, were used to explore the impacts of CC under the A1B and A2 scenarios for 2030, 2070 and 2100. Decreases in climatic suitability for OP in the region were gradual by 2030 but became more pronounced by 2100. These projections imply that OP growth will be affected severely by CC, with obvious implications to the economies of (a) Indonesia and Malaysia and (b) the PO industry, but with potential benefits towards reducing CC. A possible remedial action is to concentrate research on development of new varieties of OP that are less vulnerable to CC.The Portuguese-based authors thank the FCT Strategic Project of UID/BIO/04469/2013 unit, the project RECI/BBB-EBI/0179/2012 (FCOMP-01-0124-FEDER-027462) and the Project "BioEnv - Biotechnology and Bioengineering for a sustainable world", REF. NORTE-07-0124-FEDER-000048, co-funded by the Programa Operacional Regional do Norte (ON.2 - O Novo Norte), QREN, FEDER

    Impacts of climate change on plant diseases – opinions and trends

    Get PDF
    There has been a remarkable scientific output on the topic of how climate change is likely to affect plant diseases in the coming decades. This review addresses the need for review of this burgeoning literature by summarizing opinions of previous reviews and trends in recent studies on the impacts of climate change on plant health. Sudden Oak Death is used as an introductory case study: Californian forests could become even more susceptible to this emerging plant disease, if spring precipitations will be accompanied by warmer temperatures, although climate shifts may also affect the current synchronicity between host cambium activity and pathogen colonization rate. A summary of observed and predicted climate changes, as well as of direct effects of climate change on pathosystems, is provided. Prediction and management of climate change effects on plant health are complicated by indirect effects and the interactions with global change drivers. Uncertainty in models of plant disease development under climate change calls for a diversity of management strategies, from more participatory approaches to interdisciplinary science. Involvement of stakeholders and scientists from outside plant pathology shows the importance of trade-offs, for example in the land-sharing vs. sparing debate. Further research is needed on climate change and plant health in mountain, boreal, Mediterranean and tropical regions, with multiple climate change factors and scenarios (including our responses to it, e.g. the assisted migration of plants), in relation to endophytes, viruses and mycorrhiza, using long-term and large-scale datasets and considering various plant disease control methods

    Combining qualitative and quantitative understanding for exploring cross-sectoral climate change impacts, adaptation and vulnerability in Europe

    Get PDF
    Climate change will affect all sectors of society and the environment at all scales, ranging from the continental to the national and local. Decision-makers and other interested citizens need to be able to access reliable science-based information to help them respond to the risks of climate change impacts and assess opportunities for adaptation. Participatory integrated assessment (IA) tools combine knowledge from diverse scientific disciplines, take account of the value and importance of stakeholder ‘lay insight’ and facilitate a two-way iterative process of exploration of ‘what if’s’ to enable decision-makers to test ideas and improve their understanding of the complex issues surrounding adaptation to climate change. This paper describes the conceptual design of a participatory IA tool, the CLIMSAVE IA Platform, based on a professionally facilitated stakeholder engagement process. The CLIMSAVE (climate change integrated methodology for cross-sectoral adaptation and vulnerability in Europe) Platform is a user-friendly, interactive web-based tool that allows stakeholders to assess climate change impacts and vulnerabilities for a range of sectors, including agriculture, forests, biodiversity, coasts, water resources and urban development. The linking of models for the different sectors enables stakeholders to see how their interactions could affect European landscape change. The relationship between choice, uncertainty and constraints is a key cross-cutting theme in the conduct of past participatory IA. Integrating scenario development processes with an interactive modelling platform is shown to allow the exploration of future uncertainty as a structural feature of such complex problems, encouraging stakeholders to explore adaptation choices within real-world constraints of future resource availability and environmental and institutional capacities, rather than seeking the ‘right’ answers

    Climate Change and the Potential Distribution of an Invasive Shrub, Lantana camara L

    Get PDF
    The threat posed by invasive species, in particular weeds, to biodiversity may be exacerbated by climate change. Lantana camara L. (lantana) is a woody shrub that is highly invasive in many countries of the world. It has a profound economic and environmental impact worldwide, including Australia. Knowledge of the likely potential distribution of this invasive species under current and future climate will be useful in planning better strategies to manage the invasion. A process-oriented niche model of L. camara was developed using CLIMEX to estimate its potential distribution under current and future climate scenarios. The model was calibrated using data from several knowledge domains, including phenological observations and geographic distribution records. The potential distribution of lantana under historical climate exceeded the current distribution in some areas of the world, notably Africa and Asia. Under future scenarios, the climatically suitable areas for L. camara globally were projected to contract. However, some areas were identified in North Africa, Europe and Australia that may become climatically suitable under future climates. In South Africa and China, its potential distribution could expand further inland. These results can inform strategic planning by biosecurity agencies, identifying areas to target for eradication or containment. Distribution maps of risk of potential invasion can be useful tools in public awareness campaigns, especially in countries that have been identified as becoming climatically suitable for L. camara under the future climate scenarios

    Canine Leishmaniasis in Southeastern Spain

    Get PDF
    To examine prevalence changes and risk factors for canine leishmaniasis, we conducted a cross-sectional seroprevalence study and a survey during April–June 2006. Seroprevalence had increased at the meso-Mediterranean bioclimatic level over 22 years. Risk was highest for dogs that were older, large, lived outside, and lived at the meso-Mediterranean level
    corecore