116 research outputs found

    Short-Term Load Forecasting for Industrial Customers Based on TCN-LightGBM

    Get PDF
    Accurate and rapid load forecasting for industrial customers has been playing a crucial role in modern power systems. Due to the variability of industrial customers’ activities, individual industrial loads are usually too volatile to forecast accurately. In this paper, a short-term load forecasting model for industrial customers based on the Temporal Convolutional Network (TCN) and Light Gradient Boosting Machine (LightGBM) is proposed. Firstly, a fixed-length sliding time window method is adopted to reconstruct the electrical features. Next, the TCN is utilized to extract the hidden information and long-term temporal relationships in the input features including electrical features, a meteorological feature and date features. Further, a state-of-the-art LightGBM capable of forecasting industrial customers’ loads is adopted. The effectiveness of the proposed model is demonstrated by using datasets from different industries in China, Australia and Ireland. Multiple experiments and comparisons with existing models show that the proposed model provides accurate load forecasting results

    Short-Term Load Forecasting for Industrial Customers Based on TCN-LightGBM

    Get PDF
    Accurate and rapid load forecasting for industrial customers has been playing a crucial role in modern power systems. Due to the variability of industrial customers' activities, individual industrial loads are usually too volatile to forecast accurately. In this paper, a short-term load forecasting model for industrial customers based on the Temporal Convolution Network (TCN) and Light Gradient Boosting Machine (LightGBM) is proposed. Firstly, a fixed-length sliding time window method is adopted to reconstruct the electrical features. Next, the TCN is utilized to extract the hidden information and long-term temporal relationships in the input features including electrical features, a meteorological feature and date features. Further, a state-of-the-art LightGBM capable of forecasting industrial customers' loads is adopted. The effectiveness of the proposed model is demonstrated by using datasets from different industries in China, Australia and Ireland. Multiple experiments and comparisons with existing models show that the proposed model provides accurate load forecasting results

    Short-Term Industrial Load Forecasting Based on Ensemble Hidden Markov Model

    Get PDF
    Short-term load forecasting (STLF) for industrial customers has been an essential task to reduce the cost of energy transaction and promote the stable operation of smart grid throughout the development of the modern power system. Traditional STLF methods commonly focus on establishing the non-linear relationship between loads and features, but ignore the temporal relationship between them. In this paper, an STLF method based on ensemble hidden Markov model (e-HMM) is proposed to track and learn the dynamic characteristics of industrial customer’s consumption patterns in correlated multivariate time series, thereby improving the prediction accuracy. Specifically, a novel similarity measurement strategy of log-likelihood space is designed to calculate the log-likelihood value of the multivariate time series in sliding time windows, which can effectively help the hidden Markov model (HMM) to capture the dynamic temporal characteristics from multiple historical sequences in similar patterns, so that the prediction accuracy is greatly improved. In order to improve the generalization ability and stability of a single HMM, we further adopt the framework of Bagging ensemble learning algorithm to reduce the prediction errors of a single model. The experimental study is implemented on a real dataset from a company in Hunan Province, China. We test the model in different forecasting periods. The results of multiple experiments and comparison with several state-of-the-art models show that the proposed approach has higher prediction accuracy

    Short-Term Industrial Load Forecasting Based on Ensemble Hidden Markov Model

    Get PDF
    Short-term load forecasting (STLF) for industrial customers has been an essential task to reduce the cost of energy transaction and promote the stable operation of smart grid throughout the development of the modern power system. Traditional STLF methods commonly focus on establishing the non-linear relationship between loads and features, but ignore the temporal relationship between them. In this paper, an STLF method based on ensemble hidden Markov model (e-HMM) is proposed to track and learn the dynamic characteristics of industrial customer’s consumption patterns in correlated multivariate time series, thereby improving the prediction accuracy. Specifically, a novel similarity measurement strategy of log-likelihood space is designed to calculate the log-likelihood value of the multivariate time series in sliding time windows, which can effectively help the hidden Markov model (HMM) to capture the dynamic temporal characteristics from multiple historical sequences in similar patterns, so that the prediction accuracy is greatly improved. In order to improve the generalization ability and stability of a single HMM, we further adopt the framework of Bagging ensemble learning algorithm to reduce the prediction errors of a single model. The experimental study is implemented on a real dataset from a company in Hunan Province, China. We test the model in different forecasting periods. The results of multiple experiments and comparison with several state-of-the-art models show that the proposed approach has higher prediction accuracy

    RNA m5C methylation: a potential modulator of innate immune pathways in hepatocellular carcinoma

    Get PDF
    RNA 5-methylcytosine (m5C) methylation plays a crucial role in hepatocellular carcinoma (HCC). As reported, aberrant m5C methylation is closely associated with the progression, therapeutic efficacy, and prognosis of HCC. The innate immune system functions as the primary defense mechanism in the body against pathogenic infections and tumors since it can activate innate immune pathways through pattern recognition receptors to exert anti-infection and anti-tumor effects. Recently, m5C methylation has been demonstrated to affect the activation of innate immune pathways including TLR, cGAS-STING, and RIG-I pathways by modulating RNA function, unveiling new mechanisms underlying the regulation of innate immune responses by tumor cells. However, research on m5C methylation and its interplay with innate immune pathways is still in its infancy. Therefore, this review details the biological significance of RNA m5C methylation in HCC and discusses its potential regulatory relationship with TLR, cGAS-STING, and RIG-I pathways, thereby providing fresh insights into the role of RNA methylation in the innate immune mechanisms and treatment of HCC

    Influence of Fe-rich phases and precipitates on the mechanical behaviour of Al-Cu-Mn-Fe-Sc-Zr alloys studied by synchrotron X-ray and neutron

    Get PDF
    A multiscale methodology using scanning and transmission electron microscope, synchrotron X-ray nano-tomography and micro-tomography, small angle neutron scattering, and in situ synchrotron X-ray diffraction has been used, to reveal the effect of Fe-rich phases and precipitates on the mechanical behaviour of an Al-Cu-Mn-Fe-Sc-Zr alloy. The α-Al grains size is reduced from 185.1 μm (0 MPa) and 114.3 μm (75 MPa) by applied pressure. Moreover, it has been demonstrated that suitable heat treatments modify the 3D morphology of Fe-rich phases from interconnected to a disaggregated structure that improves the mechanical properties of the alloy. The size and morphology evolution of fine precipitates under different ageing temperature and time are revealed. At ageing temperature of 160 °C, the precipitates change from GP zones to θ' (around 75 nm in length) with ageing time increasing from 1 h to 24 h; the Vickers hardness increases from 72.0 HV to 110.7HV. The high ductility of the Sc, Zr modified Al-Cu alloy is related to the complex shape and the loss of interconnectivity of the Fe-rich particles due to the heat treatment. The evolution of the crystal lattice strains in α-Al, and β-Fe calculated during tensile test using in-situ synchrotron X-ray diffraction corroborates the influence of the microstructure in the ductility of the modified alloy.This work was financially supported by the Natural Science Foundation of China (Nos. 52104373 and 51901042), the Basic and Applied Basic Foundation of Guangdong Province, China (Nos. 2020B1515120065 and 2021B1515140028); the Guangdong Province Office of Education, China (No. 2018KQNCX256). We also would like to thank the WL13HB beamline and WL14B1 beamline of Shanghai Synchrotron Radiation Facility, SSRF, China; 4W1A beamline of Beijing Synchrotron Radiation Facility, BSRF, China for provision of synchrotron radiation beamtime; and Small Angle Neutron Scattering (SANS) Beamline in China Spallation Neutron Source (CSNS, Dongguan, China) for providing neutron beamtime

    RNA-binding protein RALY reprogrammes mitochondrial metabolism via mediating miRNA processing in colorectal cancer

    Get PDF
    Objective: Dysregulated cellular metabolism is a distinct hallmark of human colorectal cancer (CRC). However, metabolic programme rewiring during tumour progression has yet to be fully understood. Design: We analysed altered gene signatures during colorectal tumour progression, and used a complex of molecular and metabolic assays to study the regulation of metabolism in CRC cell lines, human patient-derived xenograft mouse models and tumour organoid models. Results: We identified a novel RNA-binding protein, RALY (also known as hnRNPCL2), that is highly associated with colorectal tumour aggressiveness. RALY acts as a key regulatory component in the Drosha complex, and promotes the post-transcriptional processing of a specific subset of miRNAs (miR-483, miR-676 and miR-877). These miRNAs systematically downregulate the expression of the metabolism-associated genes (ATP5I, ATP5G1, ATP5G3 and CYC1) and thereby reprogramme mitochondrial metabolism in the cancer cell. Analysis of The Cancer Genome Atlas (TCGA) reveals that increased levels of RALY are associated with poor prognosis in the patients with CRC expressing low levels of mitochondrion-associated genes. Mechanistically, induced processing of these miRNAs is facilitated by their N6-methyladenosine switch under reactive oxygen species (ROS) stress. Inhibition of the m6A methylation abolishes the RALY recognition of the terminal loop of the pri-miRNAs. Knockdown of RALY inhibits colorectal tumour growth and progression in vivo and in organoid models. Conclusions: Collectively, our results reveal a critical metabolism-centric role of RALY in tumour progression, which may lead to cancer therapeutics targeting RALY for treating CRC

    Prediction of overall survival for patients with metastatic castration-resistant prostate cancer : development of a prognostic model through a crowdsourced challenge with open clinical trial data

    Get PDF
    Background Improvements to prognostic models in metastatic castration-resistant prostate cancer have the potential to augment clinical trial design and guide treatment strategies. In partnership with Project Data Sphere, a not-for-profit initiative allowing data from cancer clinical trials to be shared broadly with researchers, we designed an open-data, crowdsourced, DREAM (Dialogue for Reverse Engineering Assessments and Methods) challenge to not only identify a better prognostic model for prediction of survival in patients with metastatic castration-resistant prostate cancer but also engage a community of international data scientists to study this disease. Methods Data from the comparator arms of four phase 3 clinical trials in first-line metastatic castration-resistant prostate cancer were obtained from Project Data Sphere, comprising 476 patients treated with docetaxel and prednisone from the ASCENT2 trial, 526 patients treated with docetaxel, prednisone, and placebo in the MAINSAIL trial, 598 patients treated with docetaxel, prednisone or prednisolone, and placebo in the VENICE trial, and 470 patients treated with docetaxel and placebo in the ENTHUSE 33 trial. Datasets consisting of more than 150 clinical variables were curated centrally, including demographics, laboratory values, medical history, lesion sites, and previous treatments. Data from ASCENT2, MAINSAIL, and VENICE were released publicly to be used as training data to predict the outcome of interest-namely, overall survival. Clinical data were also released for ENTHUSE 33, but data for outcome variables (overall survival and event status) were hidden from the challenge participants so that ENTHUSE 33 could be used for independent validation. Methods were evaluated using the integrated time-dependent area under the curve (iAUC). The reference model, based on eight clinical variables and a penalised Cox proportional-hazards model, was used to compare method performance. Further validation was done using data from a fifth trial-ENTHUSE M1-in which 266 patients with metastatic castration-resistant prostate cancer were treated with placebo alone. Findings 50 independent methods were developed to predict overall survival and were evaluated through the DREAM challenge. The top performer was based on an ensemble of penalised Cox regression models (ePCR), which uniquely identified predictive interaction effects with immune biomarkers and markers of hepatic and renal function. Overall, ePCR outperformed all other methods (iAUC 0.791; Bayes factor >5) and surpassed the reference model (iAUC 0.743; Bayes factor >20). Both the ePCR model and reference models stratified patients in the ENTHUSE 33 trial into high-risk and low-risk groups with significantly different overall survival (ePCR: hazard ratio 3.32, 95% CI 2.39-4.62, p Interpretation Novel prognostic factors were delineated, and the assessment of 50 methods developed by independent international teams establishes a benchmark for development of methods in the future. The results of this effort show that data-sharing, when combined with a crowdsourced challenge, is a robust and powerful framework to develop new prognostic models in advanced prostate cancer.Peer reviewe

    Real-time Monitoring for the Next Core-Collapse Supernova in JUNO

    Full text link
    Core-collapse supernova (CCSN) is one of the most energetic astrophysical events in the Universe. The early and prompt detection of neutrinos before (pre-SN) and during the SN burst is a unique opportunity to realize the multi-messenger observation of the CCSN events. In this work, we describe the monitoring concept and present the sensitivity of the system to the pre-SN and SN neutrinos at the Jiangmen Underground Neutrino Observatory (JUNO), which is a 20 kton liquid scintillator detector under construction in South China. The real-time monitoring system is designed with both the prompt monitors on the electronic board and online monitors at the data acquisition stage, in order to ensure both the alert speed and alert coverage of progenitor stars. By assuming a false alert rate of 1 per year, this monitoring system can be sensitive to the pre-SN neutrinos up to the distance of about 1.6 (0.9) kpc and SN neutrinos up to about 370 (360) kpc for a progenitor mass of 30M⊙M_{\odot} for the case of normal (inverted) mass ordering. The pointing ability of the CCSN is evaluated by using the accumulated event anisotropy of the inverse beta decay interactions from pre-SN or SN neutrinos, which, along with the early alert, can play important roles for the followup multi-messenger observations of the next Galactic or nearby extragalactic CCSN.Comment: 24 pages, 9 figure

    Potential of Core-Collapse Supernova Neutrino Detection at JUNO

    Get PDF
    JUNO is an underground neutrino observatory under construction in Jiangmen, China. It uses 20kton liquid scintillator as target, which enables it to detect supernova burst neutrinos of a large statistics for the next galactic core-collapse supernova (CCSN) and also pre-supernova neutrinos from the nearby CCSN progenitors. All flavors of supernova burst neutrinos can be detected by JUNO via several interaction channels, including inverse beta decay, elastic scattering on electron and proton, interactions on C12 nuclei, etc. This retains the possibility for JUNO to reconstruct the energy spectra of supernova burst neutrinos of all flavors. The real time monitoring systems based on FPGA and DAQ are under development in JUNO, which allow prompt alert and trigger-less data acquisition of CCSN events. The alert performances of both monitoring systems have been thoroughly studied using simulations. Moreover, once a CCSN is tagged, the system can give fast characterizations, such as directionality and light curve
    • …
    corecore