24 research outputs found

    Results of metallographic analysis of the QUENCH-20 bundle with Bâ‚„C absorber

    Get PDF
    Experiment QUENCH-20 with BWR geometry simulation bundle was conducted at KIT on 9th October 2019 in the framework of the international SAFEST project. The test bundle mock-up represented one quarter of a BWR fuel assembly with 24 electrically heated fuel rod simulators and two B4C control blades. The rod simulators were filled with Kr to inner pressure of 5.5 bar at peak cladding temperature of 900 K. The pre-oxidation stage in the flowing gas mixture of steam and argon (each 3 g/s) and system pressure of 2 bar lasted 4 hours at the peak cladding temperature of 1250 K. During the following transient stage, the bundle was heated to a maximal temperature of 2000 K. The cladding radial extensions and failures due to inner overpressure (about 4 bar) were observed at temperature about 1700 K and lasted about 200 s. During the period of rod failures also the first absorber melt relocation accompanied by shroud failure were registered. The interaction of B4C with steel blade and ZIRLO channel box was observed at elevations 650…950 mm with formation of eutectic melt. The typical components of this melt are (Fe, Cr) borides and ZrB2 precipitated in steel or in Zr-steel eutectic melt. Massive absorber melt relocation was observed 50 s before the end of transition stage. Small fragments of the absorber melt moved down to the elevation of 50 mm. The test was terminated with the quench water injected with a flow rate of 50 g/s from the bundle bottom. Fast temperature escalation from 2000 to 2300 K during 20 s was observed. As result, the metal part (prior β-Zr) of claddings between 550 and 950 mm was melted, partially released into space between rods and partially relocated in the gap between pellet and outer oxide layer to 450 mm. The bundle elevations 850 and 750 mm are mostly oxidized with average cladding ECR 33%

    Results of metallographic analysis of the QUENCH-20 bundle with B4C absorber

    Get PDF
    Experiment QUENCH-20 with BWR geometry simulation bundle was conducted at KIT on 9th October 2019 in the framework of the international SAFEST project. The test bundle mock-up represented one quarter of a BWR fuel assembly with 24 electrically heated fuel rod simulators and two B4C control blades. The rod simulators were filled with Kr to inner pressure of 5.5 bar at peak cladding temperature of 900 K. The pre-oxidation stage in the flowing gas mixture of steam and argon (each 3 g/s) and system pressure of 2 bar lasted 4 hours at the peak cladding temperature of 1250 K. During the following transient stage, the bundle was heated to a maximal temperature of 2000 K. The cladding radial extensions and failures due to inner overpressure (about 4 bar) were observed at temperature about 1700 K and lasted about 200 s. During the period of rod failures also the first absorber melt relocation accompanied by shroud failure were registered. The interaction of B4C with steel blade and ZIRLO channel box was observed at elevations 650…950 mm with formation of eutectic melt. The typical components of this melt are (Fe, Cr) borides and ZrB2 precipitated in steel or in Zr-steel eutectic melt. Massive absorber melt relocation was observed 50 s before the end of transition stage. Small fragments of the absorber melt moved down to the elevation of 50 mm. The test was terminated with the quench water injected with a flow rate of 50 g/s from the bundle bottom. Fast temperature escalation from 2000 to 2300 K during 20 s was observed. As result, the metal part (prior β-Zr) of claddings between 550 and 950 mm was melted, partially released into space between rods and partially relocated in the gap between pellet and outer oxide layer to 450 mm. The bundle elevations 850 and 750 mm are mostly oxidized with average cladding ECR 33%

    Oxidation of Silicon Carbide Composites for Nuclear Applications at Very High Temperatures in Steam

    Get PDF
    Single-rod oxidation and quench experiments at very high temperatures in steam atmosphere were conducted with advanced, nuclear grade SiCf/SiC CMC cladding tube segments. A transient experiment was performed until severe local degradation of the sample at maximum temperature of approximately 1845 °C. The degradation was caused by complete consumption of the external CVD-SiC sealcoat, resulting in steam access to the fiber–matrix composite with less corrosion resistance. Approaching these very high temperatures was accompanied by accelerated gas release mainly of H2 and CO2, the formation of surface bubbles and white smoke. Three one-hour isothermal tests at 1700 °C in steam with final water flooding and one three-hour experiment with fast cool-down in Ar atmosphere were run under nominally identical conditions. All isothermally tested samples survived the tests without any macroscopic degradation. The mechanical performance of these quenched clad segments was not significantly affected, while maintaining a high capability to tolerate damages. Despite these harsh exposure conditions, load transfer between SiC fibers and matrix remained efficient, allowing the composites to accommodate deformation

    The osteoblast as an inflammatory cell: production of cytokines in response to bacteria and components of bacterial biofilms

    Get PDF
    Background: Implant infections are a major complication in the field of orthopaedics. Bacteria attach to the implant-surface and form biofilm-colonies which makes them difficult to treat. Not only immune cells exclusively respond to bacterial challenges, but also local tissue cells are capable of participating in defense mechanisms. The aim of this study was to evaluate the role of osteoblasts in the context of implant infections. Methods: Primary osteoblasts were cultivated and stimulated with free-swimming bacteria at 4°C and 37°C. Supernatants were harvested for ELISA and expression of pro-inflammatory cytokines evaluated by RT-PCR. Bacterial binding to osteoblasts was evaluated using cytofluorometry and uptake was investigated by 3H thymidine-labelling of bacteria. Osteoblasts were additionally stimulated with the extracellular polymeric substance (EPS) of Staphylococcus epidermidis biofilms, as well as components of the EPS; the bacterial heat shock protein GroEL in particular. Results: We demonstrated that binding of bacteria to the osteoblast cell surface leads to an increased production of pro-inflammatory cytokines. Bacteria are capable of surviving intracellular. Furthermore, osteoblasts do not only respond to free-swimming, planktonic bacteria, but also to components of the EPS, including lipoteichoic acid and the heat shock protein GroEL. Conclusion: In conclusion, local tissue cells, specifically osteoblasts, might contribute to the persistence of the inflammatory response associated with implant-infections

    Risk of contralateral second primary breast cancer according to hormone receptor status in Germany

    Get PDF
    Introduction: Hormone receptor (HR) status has become an established target in treatment strategies of breast cancer. Population-based estimates of contralateral breast cancer (CBC) incidence by HR subtype in particular are limited. The aim of this study was to provide detailed data on CBC incidence for Germany. Methods: Invasive breast cancer data were extracted on 49,804 women yielding 594 second primaries from the cancer registries of the Federal States of Brandenburg and Saarland and the area of Munich for the period from 1998 to 2007. Multiple imputation was used on missing values for HR status. We estimated standardized incidence ratios (SIRs) with 95% confidence intervals (95% CIs). Results: SIR estimates of CBC among women diagnosed with an invasive first primary breast cancer (FBC) of any HR subtype ranged from 1.0 to 1.5 in the three registries. Pooling three registries' data, the SIR of HR-positive CBC was 0.7 (95% CI: 0.6 to 0.8) among women with HR-positive FBC. For those women with HR-negative FBC, the SIR of HR-negative CBC was 8.9 (95% CI: 7.1 to 11.1). Among women with FBC diagnosed before the age of 50 years, incidence of CBC was increased, especially for HR-negative FBC (SIR: 9.2; 95% CI: 7.1 to 11.9). Conclusions: HR status of the first primary and age at first diagnosis is relevant for predicting risk of CBC. Particularly, patients with HR-negative FBC had elevated risks

    Risk of contralateral second primary breast cancer according to hormone receptor status in Germany

    Get PDF
    Introduction: Hormone receptor (HR) status has become an established target in treatment strategies of breast cancer. Population-based estimates of contralateral breast cancer (CBC) incidence by HR subtype in particular are limited. The aim of this study was to provide detailed data on CBC incidence for Germany. Methods: Invasive breast cancer data were extracted on 49,804 women yielding 594 second primaries from the cancer registries of the Federal States of Brandenburg and Saarland and the area of Munich for the period from 1998 to 2007. Multiple imputation was used on missing values for HR status. We estimated standardized incidence ratios (SIRs) with 95% confidence intervals (95% CIs). Results: SIR estimates of CBC among women diagnosed with an invasive first primary breast cancer (FBC) of any HR subtype ranged from 1.0 to 1.5 in the three registries. Pooling three registries' data, the SIR of HR-positive CBC was 0.7 (95% CI: 0.6 to 0.8) among women with HR-positive FBC. For those women with HR-negative FBC, the SIR of HR-negative CBC was 8.9 (95% CI: 7.1 to 11.1). Among women with FBC diagnosed before the age of 50 years, incidence of CBC was increased, especially for HR-negative FBC (SIR: 9.2; 95% CI: 7.1 to 11.9). Conclusions: HR status of the first primary and age at first diagnosis is relevant for predicting risk of CBC. Particularly, patients with HR-negative FBC had elevated risks

    Discovery of common and rare genetic risk variants for colorectal cancer.

    Get PDF
    To further dissect the genetic architecture of colorectal cancer (CRC), we performed whole-genome sequencing of 1,439 cases and 720 controls, imputed discovered sequence variants and Haplotype Reference Consortium panel variants into genome-wide association study data, and tested for association in 34,869 cases and 29,051 controls. Findings were followed up in an additional 23,262 cases and 38,296 controls. We discovered a strongly protective 0.3% frequency variant signal at CHD1. In a combined meta-analysis of 125,478 individuals, we identified 40 new independent signals at P < 5 × 10-8, bringing the number of known independent signals for CRC to ~100. New signals implicate lower-frequency variants, Krüppel-like factors, Hedgehog signaling, Hippo-YAP signaling, long noncoding RNAs and somatic drivers, and support a role for immune function. Heritability analyses suggest that CRC risk is highly polygenic, and larger, more comprehensive studies enabling rare variant analysis will improve understanding of biology underlying this risk and influence personalized screening strategies and drug development.Goncalo R Abecasis has received compensation from 23andMe and Helix. He is currently an employee of Regeneron Pharmaceuticals. Heather Hampel performs collaborative research with Ambry Genetics, InVitae Genetics, and Myriad Genetic Laboratories, Inc., is on the scientific advisory board for InVitae Genetics and Genome Medical, and has stock in Genome Medical. Rachel Pearlman has participated in collaborative funded research with Myriad Genetics Laboratories and Invitae Genetics but has no financial competitive interest

    Oxidation of silicon carbide composites for nuclear applications at very high temperatures in steam

    Get PDF
    International audienceFive oxidation experiments at very high temperatures in steam atmosphere were conducted with advanced, nuclear grade SiCf/SiC CMC cladding tube segments. One transient experiment was car-ried out until severe local degradation of the sample at maximum temperature of approximately 1845°C. The degradation was caused by complete consumption of the external CVD-SiC seal-coat resulting in steam access to the fiber-matrix composite with less corrosion resistance. Approaching these very high temperatures was accompanied by accelerated gas release mainly of H2 and CO2, formation of surface bubbles and white smoke. Three one-hour isothermal tests at 1700°C in steam with final water flooding and one three-hour experiment with fast cooldown in Ar atmosphere were run under nominally identical conditions. All isothermally tested samples survived the tests without any macroscopic degradation. The mechanical performance of such quenched clad seg-ments was not significantly affected with the maintenance of high capability to tolerate damages. Despite these harsh exposure conditions, load transfer between SiC fibers and matrix remains effi-cient, allowing the composites to accommodate deformation
    corecore