

Results of metallographic analysis of the QUENCH-20 bundle with B₄C absorber

J. Stuckert, U. Peters, U. Stegmaier, M. Steinbrück

Institute for Applied Materials; Program NUSAFE

QUENCH-20 (SAFEST): Choice of BWR elements, which should be simulated during QUENCH-SAFEST

ERMSAR 2022

QUENCH-20: test progress

gas injection: Ar 3g/s during the whole test; superheated steam 3 g/s until the quench initiation

IAM Institute for Applied Materials

on the end of pre-oxidation (14400 s)

on the end of transient (15880 s)

QUENCH-20 bundle surrounded by shroud: post-test view

QUENCH-20 bundle surrounded by shroud: post-test view

Strong degradation of <u>absorber blades</u>, channel box and shroud between elevations 650 and 950 mm at angle positions 0° and 270°

180°

18.05.2022 J. Stu

J. Stuckert QUENCH-20 with BWR bundle

ERMSAR 2022

Piece of absorber blade broken away between 750 and 800 mm, 0°: eutectic interaction of B₄C pins with SS blade

cross section of four B_4C pins interacted with steel blade interaction B_4C - stainless steel interaction B_4C - stainless steel - ZIRLO

Overview of polished cross sections: formation of <u>eutectic absorber melt</u> at elevations 450...950 mm;

<u>deformation of Zr shroud</u> and ZIRLO channel box at ≈900 °C due to outer overpressure of 1 bar

1150 mm	1050 mm, bottom of 4 th spacer	950 mm	850 mm
750 mm	650 mm	555 mm, middle of 3 rd spacer	450 mm
350 mm	250 mm	50 mm, bottom of 2 nd spacer	

18.05.2022 J. Stuckert QUENCH-20 with BWR bundle ERMSAR 2022

QUENCH-20: absorber melt relocation from hottest bundle elevations to elevations 250-450 mm (indication by TCs) Karlsruhe Institute of Technology

750 mm: interaction of stainless steel blade with B₄C and ZIRLO channel box

partially dissolved B₄C pin

18.05.2022 QUENCH-20 with BWR bundle J. Stuckert ERMSAR 2022

750 mm: SEM/EDX investigation of interaction of B_4C with steel blade and ZIRLO channel box

CrKa [R], ZrLa [G], FeKa [B] 15 kV 500 x WD7 mm

ZrB₂ needle precipitates in Zr-steel eutectic melt

ZrO₂ layer of ZIRLO channel box

18.05.2022 QUENCH-20 with BWR bundle J. Stuckert

12 / 24

750 mm: SEM/EDX investigation of interaction of B₄C with steel blade and ZIRLO channel box

18.05.2022 J. Stuckert QUENCH-20 with BWR bundle ERMSAR 2022

CrKa [R], ZrLa [G], FeKa [B] 18 kV 200 x WD7 mm

. — 100 µm —

QUENCH-20: reaction of B₄C with steam

only small release of CH₄ before quench;

CO and CO₂ formation firstly in the quench stage

QUENCH-20: reaction of B₄C with steam,

integral gas release

According to CO_x and CH₄ release: corresponding mass of B₂O₃ is 96.8 g; H₂ is 10.0 g; reacted B₄C 41 g, i.e. 4.6% of total B₄C mass (900 g)

QUENCH-20: hydrogen release

18.05.2022 J. Stuckert QUENCH-20 with BWR bundle

Average thicknesses of outer ZrO₂ for each cladding at the bundle elevations 450...950 mm; not symmetrical distribution of oxidation degree across the bundle due to influence of absorber blades

Karlsruhe Institute of

750 mm: micro structure of claddings

peripheral rod #17 at 45°: partially oxidized metal melt between outer and inner ZrO_2

peripheral rod #21 at 315°: not melted metal, oxidation of cracks

QUENCH-20 with BWR bundle

peripheral rod #12 at 0°: partially oxidized metal melt between outer and inner ZrO_2

18.05.2022 J. Stuckert

internal rod #2 at 315°:

melted and frozen β -Zr

between outer α -Zr(O)

and inner ZrO_{2-x}

ERMSAR 2022

Elevations without and with grid spacer

650 mm:1) local blockages between several rods,2) dark pellets contacted with inner melt: oxygen transport to melt (white pellets had no contact with melt)

550 mm: strong bundle blockage by melt collected inside partially *molten* grid spacer

450 mm: eutectic (*Inconel* spacer/ZIRLO clad) melt relocated <u>inside</u> the rod from 550 elevation

SEM/EDX mapping at 450 mm (main element is white)

Zr map

Ni map: Ni as main component of molten INCONEL spacer was relocated down in the gap between cladding and pellet

SEM/EDX mapping at 550 mm (Ni is blue)

Summary and conclusions

- > The QUENCH-20 test bundle mock-up represented one quarter of a BWR fuel assembly with 24 electrically heated fuel rod simulators and B_4C control blade. The pre-oxidation stage to ZrO_2 thickness >55 µm lasted 4 hours at the peak cladding temperature of 1250 K.
- During the transient stage, the bundle was heated to a maximal temperature of **2000 K**. The eutectic interaction of B₄C with steel blade and ZIRLO channel box was observed at elevations 650...950 mm with formation of eutectic melt. The typical components of this melt are (Fe, Cr) borides and ZrB₂ precipitated in steel or in Zr-steel eutectic melt.
- Massive absorber melt relocation was observed 50 s before the end of transient stage and <u>was localized between shroud and channel</u> <u>box</u>.
- The test was terminated with the quench water injected with a flow rate of 50 g/s from the bundle bottom. Fast *temperature* escalation from 2000 to **2300 K** during 20 s was observed. The mass spectrometer measured *release of CO (12.6 g), CO₂ (9.7 g) and* CH_4 (0.4 g) during the reflood as products of absorber oxidation; corresponding B_4C mass reacted with steam was 41 g or 4.6% of total B_4C .
- Cladding melt was formed at elevations 650...1000 mm and relocated to lower bundle elevations *inside* and outside rods to elevations 450...550 mm, where was mixed with molten Inconel grid spacer. Residual parts of claddings were oxidized with the highest oxidation degree ECR 33% at the elevation 750 mm.
- > Hydrogen production during the reflood amounted to **32** g (57.4 g during the whole test) including **10** g from **B**₄*C* oxidation.

Acknowledgment

The QUENCH-20 experiment was performed in the framework of the SAFEST project in cooperation with Swedish Radiation Safety Authority (SSM), Westinghouse Sweden, GRS and KTH and supported by the KIT program NUSAFE. Personal thanks to Mr. Isaksson (SSM), Mr. Bechta (KTH), Mr. Hollands (GRS), Ms. Korske (Westinghouse) for their help and fruitful cooperation. The bundle materials and absorbers were provided by Westinghouse Sweden.

The authors would like to thank all colleagues involved in the post-test investigations.

Thank you for your attention

http://www.iam.kit.edu/awp/163.php

http://quench.forschung.kit.edu/

18.05.2022 J. Stuckert QUENCH-20 with BWR bundle

ERMSAR 2022