75 research outputs found

    Widespread active seepage activity on the Nile Deep Sea Fan (offshore Egypt) revealed by high-definition geophysical imagery

    Get PDF
    Fluid escape structures on the Nile Deep Sea Fan were investigated during the MEDIFLUX MIMES expedition in 2004. Mud volcanoes, pockmarks and authigenic carbonate structures were surveyed for the first time with a high-resolution deep-towed 75 kHz sidescan sonar and a 2–8 kHz Chirp sediment echosounder. In combination with existing multibeam bathymetry and detailed seafloor in situ geological observations, these new data allowed detailed seep analyses. About 60 gas flares were detected acoustically in the water column from the sidescan sonar raw data atwater depths from 770 to 1700 m. These gas flares coincide at the seabed with 1) the centres of the mud volcanoes where mud is also extruded, 2) the borders of the mud volcanoes where the emitted gases contribute to the precipitation of authigenic carbonates, and 3) to the edges of broad sheets of authigenic carbonates. Subsurface sediments are commonly disturbed by ascending fluids throughout the delta, with an abundance of seep-related carbonate structures on the seafloor. The feeder channels below mud volcanoes, similar to the gas conduits below the widespread carbonate crust structures and pockmarks, are relatively narrow and, for the vast majority of them, do not exceed a few metres in diameter. The seeps on the Nile Deep Sea Fan clearly follow lineations on the seafloor that ee can relate to faults

    Multi-disciplinary investigation of fluid seepage on an unstable margin: The case of the Central Nile deep sea fan

    Get PDF
    We report on a multidisciplinary study of cold seeps explored in the Central Nile deep-sea fan of the Egyptian margin. Our approach combines in situ seafloor observation, geophysics, sedimentological data, measurement of bottom-water methane anomalies, pore-water and sediment geochemistry, and 230Th/U dating of authigenic carbonates. Two areas were investigated, which correspond to different sedimentary provinces. The lower slope, at ∌ 2100 m water depth, indicates deformation of sediments by gravitational processes, exhibiting slope-parallel elongated ridges and seafloor depressions. In contrast, the middle slope, at ∌ 1650 m water depth, exhibits a series of debris-flow deposits not remobilized by post-depositional gravity processes. Significant differences exist between fluid-escape structures from the two studied areas. At the lower slope, methane anomalies were detected in bottom-waters above the depressions, whereas the adjacent ridges show a frequent coverage of fractured carbonate pavements associated with chemosynthetic vent communities. Carbonate U/Th age dates (∌ 8 kyr BP), pore-water sulphate and solid phase sediment data suggest that seepage activity at those carbonate ridges has decreased over the recent past. In contrast, large (∌ 1 km2) carbonate-paved areas were discovered in the middle slope, with U/Th isotope evidence for ongoing carbonate precipitation during the Late Holocene (since ∌ 5 kyr BP at least). Our results suggest that fluid venting is closely related to sediment deformation in the Central Nile margin. It is proposed that slope instability leads to focused fluid flow in the lower slope and exposure of ‘fossil’ carbonate ridges, whereas pervasive diffuse flow prevails at the unfailed middle slope

    Biallelic non-productive enhancer-promoter interaction precedes imprinted expression of<i>Kcnk9</i>during mouse neural commitment

    Get PDF
    AbstractHow constitutive allelic methylation at imprinting control regions (ICRs) interacts with other levels of regulation to drive timely parental allele-specific expression along large imprinted domains remains partially understood. To gain insight into the regulation of thePeg13-Kcnk9domain, an imprinted domain with important brain functions, during neural commitment, we performed an integrative analysis of the epigenetic, transcriptomic and cis-spatial organisation in an allele-specific manner in a mouse stem cell-based model of corticogenesis that recapitulates the control of imprinted gene expression during neurodevelopment. We evidence that despite an allelic higher-order chromatin structure associated with the paternally CTCF-boundPeg13ICR, the enhancer-Kcnk9promoter contacts can occur on both alleles, although they are only productive on the maternal allele. This observation challenges the canonical model in which CTCF binding isolates the enhancer and its target gene on either side, and suggests a more nuanced role for allelic CTCF binding at some ICRs.</jats:p

    Biallelic non-productive enhancer-promoter interactions precede imprinted expression of Kcnk9 during mouse neural commitment

    Get PDF
    Summary: It is only partially understood how constitutive allelic methylation at imprinting control regions (ICRs) interacts with other regulation levels to drive timely parental allele-specific expression along large imprinted domains. The Peg13-Kcnk9 domain is an imprinted domain with important brain functions. To gain insights into its regulation during neural commitment, we performed an integrative analysis of its allele-specific epigenetic, transcriptomic, and cis-spatial organization using a mouse stem cell-based corticogenesis model that recapitulates the control of imprinted gene expression during neurodevelopment. We found that, despite an allelic higher-order chromatin structure associated with the paternally CTCF-bound Peg13 ICR, enhancer-Kcnk9 promoter contacts occurred on both alleles, although they were productive only on the maternal allele. This observation challenges the canonical model in which CTCF binding isolates the enhancer and its target gene on either side and suggests a more nuanced role for allelic CTCF binding at some ICRs

    Multidisciplinary investigation on cold seeps with vigorous gas emissions in the Sea of Marmara (MarsiteCruise): Strategy for site detection and sampling and first scientific outcome

    Get PDF
    MarsiteCruise was undertaken in October/November 2014 in the Sea of Marmara to gain detailed insight into the fate of fluids migrating within the sedimentary column and partially released into the water column. The overall objective of the project was to achieve a more global understanding of cold-seep dynamics in the context of a major active strike-slip fault. Five remotely operated vehicle (ROV) dives were performed at selected areas along the North Anatolian Fault and inherited faults. To efficiently detect, select and sample the gas seeps, we applied an original procedure. It combines sequentially (1) the acquisition of ship-borne multibeam acoustic data from the water column prior to each dive to detect gas emission sites and to design the tracks of the ROV dives, (2) in situ and real-time Raman spectroscopy analysis of the gas stream, and (3) onboard determination of molecular and isotopic compositions of the collected gas bubbles. The in situ Raman spectroscopy was used as a decision-making tool to evaluate the need for continuing with the sampling of gases from the discovered seep, or to move to another one. Push cores were gathered to study buried carbonates and pore waters at the surficial sediment, while CTD-Rosette allowed collecting samples to measure dissolved-methane concentration within the water column followed by a comparison with measurements from samples collected with the submersible Nautile during the Marnaut cruise in 2007. Overall, the visited sites were characterized by a wide diversity of seeps. CO2- and oil-rich seeps were found at the westernmost part of the sea in the Tekirdag Basin, while amphipods, anemones and coral populated the sites visited at the easternmost part in the Cinarcik Basin. Methane-derived authigenic carbonates and bacterial mats were widespread on the seafloor at all sites with variable size and distributions. The measured methane concentrations in the water column were up to 377 ÎŒmol, and the dissolved pore-water profiles indicated the occurrence of sulfate depleting processes accompanied with carbonate precipitation. The pore-water profiles display evidence of biogeochemical transformations leading to the fast depletion of seawater sulfate within the first 25-cm depth of the sediment. These results show that the North Anatolian Fault and inherited faults are important migration paths for fluids for which a significant part is discharged into the water column, contributing to the increase of methane concentration at the bottom seawater and favoring the development of specific ecosystems
    • 

    corecore