30 research outputs found

    Distribution of non-AT(1), non-AT(2) binding of (125)I-Sarcosine(1), Isoleucine(8) angiotensin II in neurolysin knockout mouse brains

    Get PDF
    The recent identification of a novel binding site for angiotensin (Ang) II as the peptidase neurolysin (E.C. 3.4.24.16) has implications for the renin-angiotensin system (RAS). This report describes the distribution of specific binding of 125I-Sarcosine1, Isoleucine8 Ang II (125I-SI Ang II) in neurolysin knockout mouse brains compared to wild-type mouse brains using quantitative receptor autoradiography. In the presence of p-chloromercuribenzoic acid (PCMB), which unmasks the novel binding site, widespread distribution of specific (3 microM Ang II displaceable) 125I-SI Ang II binding in 32 mouse brain regions was observed. Highest levels of binding >700 fmol/g initial wet weight were seen in hypothalamic, thalamic and septal regions, while the lowest level of binding <300 fmol/g initial wet weight was in the mediolateral medulla. 125I-SI Ang II binding was substantially higher by an average of 85% in wild-type mouse brains compared to neurolysin knockout brains, suggesting the presence of an additional non-AT1, non-AT2, non-neurolysin Ang II binding site in the mouse brain. Binding of 125I-SI Ang II to neurolysin in the presence of PCMB was highest in hypothalamic and ventral cortical brain regions, but broadly distributed across all regions surveyed. Non-AT1, non-AT2, non-neurolysin binding was also highest in the hypothalamus but had a different distribution than neurolysin. There was a significant reduction in AT2 receptor binding in the neurolysin knockout brain and a trend towards decreased AT1 receptor binding. In the neurolysin knockout brains, the size of the lateral ventricles was increased by 56% and the size of the mid forebrain (-2.72 to +1.48 relative to Bregma) was increased by 12%. These results confirm the identity of neurolysin as a novel Ang II binding site, suggesting that neurolysin may play a significant role in opposing the pathophysiological actions of the brain RAS and influencing brain morphology

    Meson model for f_0(980) production in peripheral pion-nucleon reactions

    Get PDF
    The Juelich model for pion-pion-scattering, based on an effective meson-meson Lagrangian is applied to the analysis of the S-wave production amplitudes derived from the BNL E852 experiment pi^- p -> pi^0 pi^0 n for a pion momentum of 18.3 GeV. The unexpected strong dependence of the S-wave partial wave amplitude on the momentum transfer between the proton and neutron in the vicinity of the f_0(980) resonance is explained in our analysis as interference effect between the correlated and uncorrelated pi^0 pi^0 pairs.Comment: 6 pages, 7 figures, formulas added, typos removed, new figure

    Induced Parity Nonconserving Interaction and Enhancement of Two-Nucleon Parity Nonconserving Forces

    Get PDF
    Two-nucleon parity nonconserving (PNC) interaction induced by the single-particle PNC weak potential and the two-nucleon residual strong interaction is considered. An approximate analytical formula for this Induced PNC Interaction (IPNCI) between proton and neutron is derived (Q(rσp×σn)δ(rprn)Q({\bf r} {\bf \sigma}_{p} \times {\bf \sigma}_{n}) \delta({\bf r}_{p}-{\bf r}_{n})), and the interaction constant is estimated. As a result of coherent contributions from the nucleons to the PNC potential, IPNCI is an order of magnitude stronger (A1/3\sim A^{1/3}) than the residual weak two-nucleon interaction and has a different coordinate and isotopic structure (e.g., the strongest part of IPNCI does not contribute to the PNC mean field). IPNCI plays an important role in the formation of PNC effects, e.g., in neutron-nucleus reactions. In that case, it is a technical way to take into account the contribution of the distant (small) components of a compound state which dominates the result. The absence of such enhancement (A1/3\sim A^{1/3}) in the case of T- and P-odd interaction completes the picture.Comment: Phys. Rev. C, to appear; 17 pages, revtex 3, no figure

    Pion Content of the Nucleon as seen in the NA51 Drell-Yan experiment

    Get PDF
    In a recent CERN Drell-Yan experiment the NA51 group found a strong asymmetry of uˉ\bar u and dˉ\bar d densities in the proton at x0.18x\simeq0.18. We interpret this result as a decisive confirmation of the pion-induced sea in the nucleon.Comment: 10 pages + 3 figures, Preprint KFA-IKP(TH)-1994-14 .tex file. After \enddocument a uu-encodeded Postscript file comprising the figures is appende

    Effects of T- and P-odd weak nucleon interaction in nuclei: renormalizations due to residual strong interaction, matrix elements between compound states and their correlations with P-violating matrix elements

    Full text link
    Manifestations of P-,T-odd weak interaction between nucleons in nucleus are considered. Renormalization of this interaction due to residual strong interaction is studied. Mean squared matrix elements of P-,T-odd weak interaction between compound states are calculated. Correlators between P-,T-odd and P-odd, T-even weak interaction matrix elements between compound states are considered and estimates for these quantities are obtained.Comment: Submitted to Phys. Rev. C; 21 pages, REVTEX 3, no figure

    Moments of isovector quark distributions from lattice QCD

    Get PDF
    We present a complete analysis of the chiral extrapolation of lattice moments of all twist-2 isovector quark distributions, including corrections from Nπ and Δπ loops. Even though the Δ resonance formally gives rise to higher order non-analytic structure, the coefficients of the higher order terms for the helicity and transversity moments are large and cancel much of the curvature generated by the wave function renormalization. The net effect is that, whereas the unpolarized moments exhibit considerable curvature, the polarized moments show little deviation from linearity as the chiral limit is approached
    corecore