361 research outputs found
Evolution of unoccupied resonance during the synthesis of a silver dimer on Ag(111)
Silver dimers were fabricated on Ag(111) by single-atom manipulation using
the tip of a cryogenic scanning tunnelling microscope. An unoccupied electronic
resonance was observed to shift toward the Fermi level with decreasing
atom-atom distance as monitored by spatially resolved scanning tunnelling
spectroscopy. Density functional calculations were used to analyse the
experimental observations and revealed that the coupling between the adsorbed
atoms is predominantly direct rather than indirect via the Ag(111) substrate.Comment: 9 pages, 3 figure
Multiplex primer extension analysis for rapid detection of major European mitochondrial haplogroups
The evolution of the human mitochondrial genome is reflected in the existence of eth- nically distinct lineages or haplogroups. Alterations of mitochondrial DNA (mtDNA) have been instrumental in studies of human phylogeny, in population genetics, and in molecular medicine to link pathological mutations to a variety of human diseases of complex etiology. For each of these applications, rapid and cost effective assays for mtDNA haplogrouping are invaluable. Here we describe a hierarchical system for mtDNA haplogrouping that combines multiplex PCR amplifications, multiplex single- base primer extensions, and CE for analyzing ten haplogroup-diagnostic mitochondrial single nucleotide polymorphisms. Using this rapid and cost-effective mtDNA geno- typing method, we were able to show that within a large, randomly selected cohort of healthy Austrians ( n = 1172), mtDNAs could be assigned to all nine major European haplogroups. Forty-four percent belonged to haplogroup H, the most frequent hap- logroup in European Caucasian populations. The other major haplogroups identified were U (15.4%), J (11.8%), T (8.2%) and K (5.1%). The frequencies of haplogroups in Austria is within the range observed for other European countries. Our method may be suitable for mitochondrial genotyping of samples from large-scale epidemiology stud- ies and for identifying markers of genetic susceptibility
Mitochondrial DNA mutations in renal cell carcinomas revealed no general impact on energy metabolism
Previously, renal cell carcinoma tissues were reported to display a marked reduction of components of the respiratory chain. To elucidate a possible relationship between tumourigenesis and alterations of oxidative phosphorylation, we screened for mutations of the mitochondrial DNA (mtDNA) in renal carcinoma tissues and patient-matched normal kidney cortex. Seven of the 15 samples investigated revealed at least one somatic heteroplasmic mutation as determined by denaturating HPLC analysis (DHPLC). No homoplasmic somatic mutations were observed. Actually, half of the mutations presented a level of heteroplasmy below 25%, which could be easily overlooked by automated sequence analysis. The somatic mutations included four known D-loop mutations, four so far unreported mutations in ribosomal genes, one synonymous change in the ND4 gene and four nonsynonymous base changes in the ND2, COI, ND5 and ND4L genes. One renal cell carcinoma tissue showed a somatic A3243G mutation, which is a known frequent cause of MELAS syndrome (mitochondrial encephalomyopathy, lactic acidosis, stroke-like episode) and specific compensatory alterations of enzyme activities of the respiratory chain in the tumour tissue. No difference between histopathology and clinical progression compared to the other tumour tissues was observed. In conclusion, the low abundance as well as the frequently observed low level of heteroplasmy of somatic mtDNA mutations indicates that the decreased aerobic energy capacity in tumour tissue seems to be mediated by a general nuclear regulated mechanism
Severe depletion of mitochondrial DNA in spinal muscular atrophy
Spinal muscular atrophy (SMA) is a neuromus- cular disorder in childhood leading to a dramatic loss of muscle strength. Functional investigations with high-reso- lution polarography and enzyme measurements of the res- piratory chain revealed lowered activities in muscle tissue of SMA patients. To gain a better understanding of this low energy supply we analyzed the amount of mitochon- drial DNA (mtDNA) in skeletal muscle of 20 unrelated children with genetically proven SMA and 31 controls. Quantitative Southern blot analysis revealed a severe and homogeneous decrease in the content of muscle mtDNA in relation to nuclear DNA in SMA patients (90.3±7.8%), whereas by immunofluorescence no decrease in the num- ber of mitochondria was detected. In addition, a two- to threefold reduction of the nuclear-encoded complex II (succinate dehydrogenase) activity was detected in SMA muscle tissue. Western blot analysis showed a significant reduction of both mitochondrial- and nuclear-encoded cy- tochrome c oxidase subunits. Our results indicate that mtDNA depletion in SMA is a consequence of severe at- rophy, and has to be differentiated by measurement of complex II from an isolated reduction of mtDNA as found in patients with mitochondriocytopathies and the so- called mtDNA depletion syndrome
Immundefekte bei chronischer Rhinosinusitis : eine bedeutende und oft unterschätzte Ursache
Background Chronic rhinosinusitis (CRS) is one of the most frequent chronic diseases. Among these patients the prevalence of immune defects is higher than in the healthy general population. Methods A selective review of the literature was carried out in PubMed and Medline covering the period between 2008 and 2019. Additionally, recent German publications in journals not listed in the abovementioned databases were analyzed. Results The diagnostic workflow with respect to the immunodeficiency consists of a detailed anamnesis and physical examination, laboratory tests and the antibody reaction to polysaccharide vaccines and antigens. Beside antibiotic treatment, vaccinations and immunoglobulin replacement are available. Notwithstanding the above, functional endoscopic surgery of the paranasal sinuses should be performed according to guideline recommendations. Conclusion Patients with CRS who do not sufficiently respond to conservative and surgical treatment should be checked for underlying immunodeficiencies
An asteroseismic test of diffusion theory in white dwarfs
The helium-atmosphere (DB) white dwarfs are commonly thought to be the
descendants of the hotter PG1159 stars, which initially have uniform He/C/O
atmospheres. In this evolutionary scenario, diffusion builds a pure He surface
layer which gradually thickens as the star cools. In the temperature range of
the pulsating DB white dwarfs (T_eff ~ 25,000 K) this transformation is still
taking place, allowing asteroseismic tests of the theory. We have obtained
dual-site observations of the pulsating DB star CBS114, to complement existing
observations of the slightly cooler star GD358. We recover the 7 independent
pulsation modes that were previously known, and we discover 4 new ones to
provide additional constraints on the models. We perform objective global
fitting of our updated double-layered envelope models to both sets of
observations, leading to determinations of the envelope masses and pure He
surface layers that qualitatively agree with the expectations of diffusion
theory. These results provide new asteroseismic evidence supporting one of the
central assumptions of spectral evolution theory, linking the DB white dwarfs
to PG1159 stars.Comment: 7 pages, 3 figures, 3 tables, accepted for publication in A&
Spin dynamics in the diluted ferromagnetic Kondo lattice model
The interplay of disorder and competing interactions is investigated in the
carrier-induced ferromagnetic state of the Kondo lattice model within a
numerical finite-size study in which disorder is treated exactly. Competition
between impurity spin couplings, stability of the ferromagnetic state, and
magnetic transition temperature are quantitatively investigated in terms of
magnon properties for different models including dilution, disorder, and
weakly-coupled spins. A strong optimization is obtained for T_c at hole doping
p << x, highlighting the importance of compensation in diluted magnetic
semiconductors. The estimated T_c is in good agreement with experimental
results for Ga_{1-x}Mn_x As for corresponding impurity concentration, hole
bandwidth, and compensation. Finite-temperature spin dynamics is quantitatively
studied within a locally self-consistent magnon renormalization scheme, which
yields a substantial enhancement in T_c due to spin clustering, and highlights
the nearly-paramagnetic spin dynamics of weakly-coupled spins. The large
enhancement in density of low-energy magnetic excitations due to disorder and
competing interactions results in a strong thermal decay of magnetization,
which fits well with the Bloch form M_0(1-BT^{3/2}) at low temperature, with B
of same order of magnitude as obtained in recent squid magnetization
measurements on Ga_{1-x}Mn_x As samples.Comment: 13 pages, 14 figure
- …