211 research outputs found
Urban Heat Island monitoring with Global Navigation Satellite System (GNSS) data
The Urban Heat Island (UHI) effect occurs when the temperature in an urban area is higher than the temperature at a rural area. UHIs are monitored using remote sensing techniques such as satellite imagery or using temperature sensors de-ployed in a metropolitan area. In this chapter we propose a methodology to moni-tor the UHI intensity from Global Navigation Satellite Systems (GNSS) data. As the GNSS signal travels from the satellite to the receiver it propagates through the troposphere. A delay (Tropospheric delay) affects the signal. The delay is propor-tional to environmental variables. Also, the tropospheric delay in zenith direction (ZTD) is estimated as part of the Precise Point Positioning (PPP) technique. Therefore, in this chapter it is shown how to use process GNSS data to obtain ZTD and obtain temperature at an urban and a rural site simultaneously from the ZTD. The advantages of using GNSS data is its availability and many GNSS networks have been deployed in different cities so no need to deploy sensor net-works. Furthermore, GNSS signal is less affected by bad weather conditions than satellite imagery
Frequent downregulation of 14-3-3 σ protein and hypermethylation of 14-3-3 σ gene in salivary gland adenoid cystic carcinoma
14-3-3 σ, a target gene of the p53 tumour suppressor protein, has been shown to regulate the cell cycle at the G2/M checkpoint. Recent studies have demonstrated that 14-3-3 σ is downregulated by hypermethylation of the CpG island in several types of cancer. In this study, we investigated the expression and methylation status of 14-3-3 σ in human salivary gland adenoid cystic carcinoma (ACC) and mucoepidermoid carcinoma (MEC). Immunohistochemical analysis revealed that the positive expression rate of 14-3-3 σ in ACC (one out of 14) was markedly lower than that in MEC (ten out of 10). Since most of the ACCs carried the wild-type p53 protein, downregulation of 14-3-3 σ in ACC may not be due to the dysfunction of p53 pathway. Microdissection–methylation-specific PCR revealed that frequent hypermethylation of the 14-3-3 σ gene was observed in ACC when compared to that in MEC. In cultured-ACC cells, we confirmed the downregulation of 14-3-3 σ via hemimethylation of the gene by sequencing analysis after sodium bisulphite treatment. Furthermore, re-expression of 14-3-3 σ in the ACC cells was induced by the treatment with DNA demethylating agent, 5-aza-2′-deoxycytidine. Irradiation apparently induced the enhanced expression of 14-3-3 σ and G2/M arrest in normal salivary gland cells; however, in the ACC cells, neither induction of 14-3-3 σ nor G2/M arrest was induced by irradiation. These results suggest that downregulation of 14-3-3 σ might play critical roles in the neoplastic development and radiosensitivity of ACC
Explaining Andean Potato Weevils in Relation to Local and Landscape Features: A Facilitated Ecoinformatics Approach
BACKGROUND: Pest impact on an agricultural field is jointly influenced by local and landscape features. Rarely, however, are these features studied together. The present study applies a "facilitated ecoinformatics" approach to jointly screen many local and landscape features of suspected importance to Andean potato weevils (Premnotrypes spp.), the most serious pests of potatoes in the high Andes. METHODOLOGY/PRINCIPAL FINDINGS: We generated a comprehensive list of predictors of weevil damage, including both local and landscape features deemed important by farmers and researchers. To test their importance, we assembled an observational dataset measuring these features across 138 randomly-selected potato fields in Huancavelica, Peru. Data for local features were generated primarily by participating farmers who were trained to maintain records of their management operations. An information theoretic approach to modeling the data resulted in 131,071 models, the best of which explained 40.2-46.4% of the observed variance in infestations. The best model considering both local and landscape features strongly outperformed the best models considering them in isolation. Multi-model inferences confirmed many, but not all of the expected patterns, and suggested gaps in local knowledge for Andean potato weevils. The most important predictors were the field's perimeter-to-area ratio, the number of nearby potato storage units, the amount of potatoes planted in close proximity to the field, and the number of insecticide treatments made early in the season. CONCLUSIONS/SIGNIFICANCE: Results underscored the need to refine the timing of insecticide applications and to explore adjustments in potato hilling as potential control tactics for Andean weevils. We believe our study illustrates the potential of ecoinformatics research to help streamline IPM learning in agricultural learning collaboratives
Kualitas Hidup Pasien Diabetes Melitus Tipe 2 di Puskesmas Se Kota Kupang
Diabetes Mellitus is well known as a chronic disease which can lead to a decrease in quality of life in all domains. The study aims to explore the diabetic type 2 patient\u27s quality of life and find out the factors affecting in type 2 diabetic mellitus patients. The cross-sectional study design is used that included 65 patient with type 2 diabetes mellitus, in 11 public health centers of Kupang City. Data were collected by using Short Form Survey (SF-36) that assessed 8-scale health profile. Independent sample t-test is used to analyze the correlation between the factors affecting and the quality of life. the study showed that the QoL of DM patients decreased in all 8- health profile including physical functioning, social functioning, mental health, general health, pain, change in the role due to physical problems and emotional problems. The Study also showed there was a relationship between gender, duration of suffering from Diabetes mellitus, and complications to the quality of life. Male perceived a better quality of life than female
Modelling the Impact of Anisotropy on Hydrocarbon Production in Heterogeneous Reservoirs
Effective and optimal hydrocarbon production from heterogeneous and anisotropic reservoirs is a developing challenge in the hydrocarbon industry. While experience leads us to intuitive decisions for the production of these heterogeneous and anisotropic reservoirs, there is a lack of information concerning how hydrocarbon and water production rate and cumulative production as well as water cut and water breakthrough time depend on quantitative measures of heterogeneity and anisotropy. In this work, we have used Generic Advanced Fractal Reservoir Models (GAFRMs) to model reservoirs with controlled heterogeneity and vertical and/or horizontal anisotropy, following the approach of Al-Zainaldin et al. (Transp Porous Media 116(1):181–212, 2017). This Generic approach uses fractal mathematics which captures the spatial variability of real reservoirs at all scales. The results clearly show that some anisotropy in hydrocarbon production and water cut can occur in an isotropic heterogeneous reservoir and is caused by the chance placing of wells in high-quality reservoir rock or vice versa. However, when horizontal anisotropy is introduced into the porosity, cementation exponent and grain size (and hence also into the permeability, capillary pressure, water saturation) in the reservoir model, all measures of early stage and middle stage hydrocarbon and water production become anisotropic, with isotropic flow returning towards the end of the reservoir’s lifetime. Specifically, hydrocarbon production rate and cumulative production are increased in the direction of anisotropy, as is water cut, while the time to water breakthrough is reduced. We found no such relationship when varying vertical anisotropy because we were using vertical wells but expect there to be an effect if horizontal wells were used
- …