126 research outputs found

    Homomorphisms of (n,m)-graphs with respect to generalised switch

    Full text link
    An (n,m)(n,m)-graph has nn different types of arcs and mm different types of edges. A homomorphism of an (n,m)(n,m)-graph GG to an (n,m)(n,m)-graph HH is a vertex mapping that preserves adjacency type and directions. Notice that, in an (n,m)(n,m)-graph a vertex can possibly have (2n+m)(2n+m) different types of neighbors. In this article, we study homomorphisms of (n,m)(n,m)-graphs while an Abelian group acts on the set of different types of neighbors of a vertex.Comment: 13 pages, conferenc

    Legionella SBT applied directly to respiratory samples as a rapid molecular epidemiological tool

    Get PDF
    Legionnaires' disease (LD) is an atypical pneumonia caused by the inhalation of Legionella. The methods used for the diagnosis of LD are direct culture of respiratory samples and urinary antigen detection. However, the sensitivity of culture is low, and the urinary antigen test is specific only for L. pneumophila sg1. Moreover, as no isolates are obtained, epidemiological studies cannot be performed. The implementation of Nested-sequence-based typing (Nested-SBT) makes it possible to carry out epidemiological studies while also confirming LD, especially in cases caused by non-sg 1. Sixty-two respiratory samples from patients with Legionella clinically confirmed by positive urinary antigen tests were cultured and tested by Nested-SBT, following the European Study Group for Legionella Infections (ESGLI) protocol. Only 2/62 (3.2%) respiratory samples were culture-positive. Amplification and sequencing of Nested-SBT genes were successfully performed in 57/62 samples (91.9%). The seven target genes were characterised in 39/57 (68.4%) respiratory samples, and the complete sequence type (ST) was obtained. The mip gene was the most frequently amplified and sequenced. Nested-SBT is a useful method for epidemiological studies in culture-negative samples, achieving a 28.7-fold improvement over the results of culture studies and reducing the time needed to obtain molecular epidemiological results

    Standardized Hepatitis B Virus RNA Quantification in Untreated and Treated Chronic Patients: a Promising Marker of Infection Follow-Up.

    Get PDF
    The measurement and interpretation of HBV DNA and RNA levels in HBV infected patients treated with antiviral therapy supports the objective of HBV disease management. Here, we quantified circulating HBV RNA through a standardized and sensitive assay in follow-up samples from both naive and treated patients as a marker of infection evolution. HBV DNA (HBV DNA for use in Cobas 6800/8800 Automated Roche Molecular Systems), RNA (Roche HBV RNA Investigational Assay for use in the Cobas 6800/8800; Roche), HBeAg and HBsAg (Elycsys HBsAg chemiluminescence immunoassay by Cobas 8000; Roche), and core-related antigen (Lumipulse G chemiluminescence assay; Fujirebio) levels were measured in cohorts of untreated or nucleos(t)ide treated, HBV-infected subjects in an outpatient hospital setting. HBV DNA levels in untreated people were 3.6 log10 higher than corresponding RNA levels and were stable over 5 years of observation. While only five of 52 treated patients had DNA levels below the lower limit of quantification (10 IU/mL) at the end of follow-up, 13 had HBV RNA levels persistently above this limit, including eight with undetectable DNA. In samples with undetectable core-related antigen we observed a median HBsAg titer 2.7-fold higher than in samples with undetectable RNA (adjusted P = 0.012). Detectable HBV RNA with undetectable HBV DNA was a negative predictor of HBsAg decrease to a level ≤100 IU/mL (P = 0.03). In naive patients the difference between HBV DNA and RNA was higher than previously reported. HBV RNA rapidly decreased during treatment. However, in some cases, it was detectable even after years of effective therapy, being a negative predictor of HBsAg decrease. The investigational RNA assay for use on the Cobas 6800/8800 instruments is a sensitive and standardized method that could be applied in general management of HBV infection. IMPORTANCE This study focused on the quantification of circulating HBV RNA by using a standardized and sensitive assay. Thanks to this system we observed a higher difference between circulating HBV DNA and RNA than previously reported. In treated patients, HBV RNA decreased together with DNA, although some patients presented detectable levels even after years of successful antiviral treatment, suggesting a persistent viral transcription. Of note, the detection of viral RNA when HBV DNA is undetectable was a negative predictor of HBsAg decrease to a level ≤100 IU/mL. This assay could be extremely helpful in HBV patients management to study viral transcription and to identify those treated patients that may achieve sustained viral suppression

    Clinical features and predictors of mortality in admitted patients with community- and hospital-acquired legionellosis: A Danish historical cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Legionella is a common cause of bacterial pneumonia. Community-acquired [CAL] and hospital-acquired legionellosis [HAL] may have different presentations and outcome. We aimed to compare clinical characteristics and examine predictors of mortality for CAL and HAL.</p> <p>Methods</p> <p>We identified hospitalized cases of legionellosis in 4 Danish counties from January 1995 to December 2005 using the Danish national surveillance system and databases at departments of clinical microbiology. Clinical and laboratory data were retrieved from medical records; vital status was obtained from the Danish Civil Registration System. We calculated 30- and 90-day case fatality rates and identified independent predictors of mortality using logistic regression analyses.</p> <p>Results</p> <p>We included 272 cases of CAL and 60 cases of HAL. Signs and symptoms of HAL were less pronounced than for CAL and time from in-hospital symptoms to legionellosis diagnosis was shorter for CAL than for HAL (5.5 days vs. 12 days p < 0.001). Thirty-day case fatality was 12.9% for CAL and 33.3% for HAL; similarly 90-day case fatalities in the two groups were 15.8% and 55.0%, respectively. In a logistic regression analysis (excluding symptoms and laboratory tests) age >65 years (OR = 2.6, 95% CI: 1.1-5.9) and Charlson comorbidty index ≥2 (OR = 2.7, 95% CI: 1.1-6.5) were associated with an increased risk of death in CAL. We identified no statistically significant predictors of 30-day mortality in HAL.</p> <p>Conclusions</p> <p>Signs and symptoms were less pronounced in HAL compared to CAL. Conversely, 30-day case fatality was almost 3 times higher. Clinical awareness is important for the timely diagnosis and treatment especially of HAL. There is a need for further studies of prognostic factors in order to improve the therapeutic approach to legionellosis and potentially reduce mortality.</p

    Community-acquired pneumonia by Legionella pneumophila serogroups 1–6 in Brazil

    Get PDF
    SummaryA prospective cohort study of adult patients hospitalized due to community-acquired pneumonia was carried out for 1 year in a Brazilian university general hospital to detect the incidence of community-acquired pneumonia by Legionella pneumophila serogroups 1–6. During a whole year, a total of 645 consecutive patients who were hospitalized due to a initial presumptive diagnosis of respiratory disease by ICD-10 (J00–J99), excluding upper respiratory diseases, were screened to detect the patients with community-acquired pneumonia. Fifty-nine consecutive patients hospitalized due to community-acquired pneumonia between July 19, 2000 and July 18, 2001, were included in the study. They had determinations of serum antibodies to L. pneumophila serogroups 1–6 by indirect immunofluorescence antibody test at the Infectious Diseases Laboratory of University of Louisville (KY, USA) and urinary antigen tests for L. pneumophila serogroup 1. Three patients had community-acquired pneumonia by L. pneumophila serogroups 1–6, two patients being diagnosed by seroconversion and positive urinary antigen tests; the other had negative serologies but strongly positive urinary antigen test. The incidence of community-acquired pneumonia by L. pneumophila serogroups 1–6 in our hospital was 5.1%

    Single-cell profiling of lncRNA expression during Ebola virus infection in rhesus macaques

    Get PDF
    Long non-coding RNAs (lncRNAs) are involved in numerous biological processes and are pivotal mediators of the immune response, yet little is known about their properties at the single-cell level. Here, we generate a multi-tissue bulk RNAseq dataset from Ebola virus (EBOV) infected and not-infected rhesus macaques and identified 3979 novel lncRNAs. To profile lncRNA expression dynamics in immune circulating single-cells during EBOV infection, we design a metric, Upsilon, to estimate cell-type specificity. Our analysis reveals that lncRNAs are expressed in fewer cells than protein-coding genes, but they are not expressed at lower levels nor are they more cell-type specific when expressed in the same number of cells. In addition, we observe that lncRNAs exhibit similar changes in expression patterns to those of protein-coding genes during EBOV infection, and are often co-expressed with known immune regulators. A few lncRNAs change expression specifically upon EBOV entry in the cell. This study sheds light on the differential features of lncRNAs and protein-coding genes and paves the way for future single-cell lncRNA studies

    Use of anticoagulants and antiplatelet agents in stable outpatients with coronary artery disease and atrial fibrillation. International CLARIFY registry

    Get PDF

    Voxel-based statistical analysis of thalamic glucose metabolism in traumatic brain injury: relationship with consciousness and cognition

    Full text link
    Objective: To study the relationship between thalamic glucose metabolism and neurological outcome after severe traumatic brain injury (TBI). Methods: Forty-nine patients with severe and closed TBI and 10 healthy control subjects with 18F-FDG PET were studied. Patients were divided into three groups: MCS&VS group (n ¼ 17), patients in a vegetative or a minimally conscious state; In-PTA group (n ¼ 12), patients in a state of post-traumatic amnesia (PTA); and Out-PTA group (n ¼ 20), patients who had emerged from PTA. SPM5 software implemented in MATLAB 7 was used to determine the quantitative differences between patients and controls. FDG-PET images were spatially normalized and an automated thalamic ROI mask was generated. Group differences were analysed with two sample voxel-wise t-tests. Results: Thalamic hypometabolism was the most prominent in patients with low consciousness (MCS&VS group) and the thalamic hypometabolism in the In-PTA group was more prominent than that in the Out-PTA group. Healthy control subjects showed the greatest thalamic metabolism. These differences in metabolism were more pronounced in the internal regions of the thalamus. Conclusions: The results confirm the vulnerability of the thalamus to suffer the effect of the dynamic forces generated during a TBI. Patients with thalamic hypometabolism could represent a sub-set of subjects that are highly vulnerable to neurological disability after TBI.Lull Noguera, N.; Noé, E.; Lull Noguera, JJ.; Garcia Panach, J.; Chirivella, J.; Ferri, J.; López-Aznar, D.... (2010). Voxel-based statistical analysis of thalamic glucose metabolism in traumatic brain injury: relationship with consciousness and cognition. Brain Injury. 24(9):1098-1107. doi:10.3109/02699052.2010.494592S10981107249Gallagher, C. N., Hutchinson, P. J., & Pickard, J. D. (2007). Neuroimaging in trauma. Current Opinion in Neurology, 20(4), 403-409. doi:10.1097/wco.0b013e32821b987bWoischneck, D., Klein, S., Rei�berg, S., D�hring, W., Peters, B., & Firsching, R. (2001). Classification of Severe Head Injury Based on Magnetic Resonance Imaging. Acta Neurochirurgica, 143(3), 263-271. doi:10.1007/s007010170106Grados, M. A. (2001). Depth of lesion model in children and adolescents with moderate to severe traumatic brain injury: use of SPGR MRI to predict severity and outcome. Journal of Neurology, Neurosurgery & Psychiatry, 70(3), 350-358. doi:10.1136/jnnp.70.3.350Meythaler, J. M., Peduzzi, J. D., Eleftheriou, E., & Novack, T. A. (2001). Current concepts: Diffuse axonal injury–associated traumatic brain injury. Archives of Physical Medicine and Rehabilitation, 82(10), 1461-1471. doi:10.1053/apmr.2001.25137Scheid, R., Walther, K., Guthke, T., Preul, C., & von Cramon, D. Y. (2006). Cognitive Sequelae of Diffuse Axonal Injury. Archives of Neurology, 63(3), 418. doi:10.1001/archneur.63.3.418Brandstack, N., Kurki, T., Tenovuo, O., & Isoniemi, H. (2006). MR imaging of head trauma: Visibility of contusions and other intraparenchymal injuries in early and late stage. Brain Injury, 20(4), 409-416. doi:10.1080/02699050500487951Xu, J., Rasmussen, I.-A., Lagopoulos, J., & Håberg, A. (2007). Diffuse Axonal Injury in Severe Traumatic Brain Injury Visualized Using High-Resolution Diffusion Tensor Imaging. Journal of Neurotrauma, 24(5), 753-765. doi:10.1089/neu.2006.0208Levine, B., Fujiwara, E., O’connor, C., Richard, N., Kovacevic, N., Mandic, M., … Black, S. E. (2006). In Vivo Characterization of Traumatic Brain Injury Neuropathology with Structural and Functional Neuroimaging. Journal of Neurotrauma, 23(10), 1396-1411. doi:10.1089/neu.2006.23.1396Metting, Z., Rödiger, L. A., De Keyser, J., & van der Naalt, J. (2007). Structural and functional neuroimaging in mild-to-moderate head injury. The Lancet Neurology, 6(8), 699-710. doi:10.1016/s1474-4422(07)70191-6Nakayama, N. (2006). Relationship between regional cerebral metabolism and consciousness disturbance in traumatic diffuse brain injury without large focal lesions: an FDG-PET study with statistical parametric mapping analysis. Journal of Neurology, Neurosurgery & Psychiatry, 77(7), 856-862. doi:10.1136/jnnp.2005.080523Nakayama, N. (2006). Evidence for white matter disruption in traumatic brain injury without macroscopic lesions. Journal of Neurology, Neurosurgery & Psychiatry, 77(7), 850-855. doi:10.1136/jnnp.2005.077875O’Leary, D. D. M., Schlaggar, B. L., & Tuttle, R. (1994). Specification of Neocortical Areas and Thalamocortical Connections. Annual Review of Neuroscience, 17(1), 419-439. doi:10.1146/annurev.ne.17.030194.002223Mitelman, S. A., Byne, W., Kemether, E. M., Newmark, R. E., Hazlett, E. A., Haznedar, M. M., & Buchsbaum, M. S. (2006). Metabolic thalamocortical correlations during a verbal learning task and their comparison with correlations among regional volumes. Brain Research, 1114(1), 125-137. doi:10.1016/j.brainres.2006.07.043Laureys, S., Faymonville, M., Luxen, A., Lamy, M., Franck, G., & Maquet, P. (2000). Restoration of thalamocortical connectivity after recovery from persistent vegetative state. The Lancet, 355(9217), 1790-1791. doi:10.1016/s0140-6736(00)02271-6Laureys, S., Goldman, S., Phillips, C., Van Bogaert, P., Aerts, J., Luxen, A., … Maquet, P. (1999). Impaired Effective Cortical Connectivity in Vegetative State: Preliminary Investigation Using PET. NeuroImage, 9(4), 377-382. doi:10.1006/nimg.1998.0414Laureys, S., Owen, A. M., & Schiff, N. D. (2004). Brain function in coma, vegetative state, and related disorders. The Lancet Neurology, 3(9), 537-546. doi:10.1016/s1474-4422(04)00852-xGuye, M., Bartolomei, F., & Ranjeva, J.-P. (2008). Imaging structural and functional connectivity: towards a unified definition of human brain organization? Current Opinion in Neurology, 24(4), 393-403. doi:10.1097/wco.0b013e3283065cfbPrice, C. J., & Friston, K. J. (2002). Functional Imaging Studies of Neuropsychological Patients: Applications and Limitations. Neurocase, 8(5), 345-354. doi:10.1076/neur.8.4.345.16186Kim, J., Avants, B., Patel, S., Whyte, J., Coslett, B. H., Pluta, J., … Gee, J. C. (2008). Structural consequences of diffuse traumatic brain injury: A large deformation tensor-based morphometry study. NeuroImage, 39(3), 1014-1026. doi:10.1016/j.neuroimage.2007.10.005Maxwell, W. L., MacKinnon, M. A., Smith, D. H., McIntosh, T. K., & Graham, D. I. (2006). Thalamic Nuclei After Human Blunt Head Injury. Journal of Neuropathology & Experimental Neurology, 65(5), 478-488. doi:10.1097/01.jnen.0000229241.28619.75SIDAROS, A., SKIMMINGE, A., LIPTROT, M., SIDAROS, K., ENGBERG, A., HERNING, M., … ROSTRUP, E. (2009). Long-term global and regional brain volume changes following severe traumatic brain injury: A longitudinal study with clinical correlates. NeuroImage, 44(1), 1-8. doi:10.1016/j.neuroimage.2008.08.030Ashburner, J., & Friston, K. J. (2000). Voxel-Based Morphometry—The Methods. NeuroImage, 11(6), 805-821. doi:10.1006/nimg.2000.0582Good, C. D., Johnsrude, I. S., Ashburner, J., Henson, R. N. A., Friston, K. J., & Frackowiak, R. S. J. (2001). A Voxel-Based Morphometric Study of Ageing in 465 Normal Adult Human Brains. NeuroImage, 14(1), 21-36. doi:10.1006/nimg.2001.0786Giacino, J. T., Ashwal, S., Childs, N., Cranford, R., Jennett, B., Katz, D. I., … Zasler, N. D. (2002). The minimally conscious state: Definition and diagnostic criteria. Neurology, 58(3), 349-353. doi:10.1212/wnl.58.3.349Gispert, J. ., Pascau, J., Reig, S., Martínez-Lázaro, R., Molina, V., García-Barreno, P., & Desco, M. (2003). Influence of the normalization template on the outcome of statistical parametric mapping of PET scans. NeuroImage, 19(3), 601-612. doi:10.1016/s1053-8119(03)00072-7Ashburner, J., & Friston, K. J. (1999). Nonlinear spatial normalization using basis functions. Human Brain Mapping, 7(4), 254-266. doi:10.1002/(sici)1097-0193(1999)7:43.0.co;2-gTzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., … Joliot, M. (2002). Automated Anatomical Labeling of Activations in SPM Using a Macroscopic Anatomical Parcellation of the MNI MRI Single-Subject Brain. NeuroImage, 15(1), 273-289. doi:10.1006/nimg.2001.0978Genovese, C. R., Lazar, N. A., & Nichols, T. (2002). Thresholding of Statistical Maps in Functional Neuroimaging Using the False Discovery Rate. NeuroImage, 15(4), 870-878. doi:10.1006/nimg.2001.1037LAUREYS, S., LEMAIRE, C., MAQUET, P., PHILLIPS, C., & FRANCK, G. (1999). Cerebral metabolism during vegetative state and after recovery to consciousness. Journal of Neurology, Neurosurgery & Psychiatry, 67(1), 121-122. doi:10.1136/jnnp.67.1.121Tommasino, C., Grana, C., Lucignani, G., Torri, G., & Fazio, F. (1995). Regional Cerebral Metabolism of Glucose in Comatose and Vegetative State Patients. Journal of Neurosurgical Anesthesiology, 7(2), 109-116. doi:10.1097/00008506-199504000-00006ANDERSON, C. V., WOOD, D.-M. G., BIGLER, E. D., & BLATTER, D. D. (1996). Lesion Volume, Injury Severity, and Thalamic Integrity following Head Injury. Journal of Neurotrauma, 13(2), 59-65. doi:10.1089/neu.1996.13.59Ge, Y., Patel, M. B., Chen, Q., Grossman, E. J., Zhang, K., Miles, L., … Grossman, R. I. (2009). Assessment of thalamic perfusion in patients with mild traumatic brain injury by true FISP arterial spin labelling MR imaging at 3T. Brain Injury, 23(7-8), 666-674. doi:10.1080/02699050903014899Uzan, M. (2003). Thalamic proton magnetic resonance spectroscopy in vegetative state induced by traumatic brain injury. Journal of Neurology, Neurosurgery & Psychiatry, 74(1), 33-38. doi:10.1136/jnnp.74.1.33OMMAYA, A. K., & GENNARELLI, T. A. (1974). CEREBRAL CONCUSSION AND TRAUMATIC UNCONSCIOUSNESS. Brain, 97(1), 633-654. doi:10.1093/brain/97.1.633Giacino, J., & Whyte, J. (2005). The Vegetative and Minimally Conscious States. Journal of Head Trauma Rehabilitation, 20(1), 30-50. doi:10.1097/00001199-200501000-00005Zeman, A. (2001). Consciousness. Brain, 124(7), 1263-1289. doi:10.1093/brain/124.7.1263Kinney, H. C., Korein, J., Panigrahy, A., Dikkes, P., & Goode, R. (1994). Neuropathological Findings in the Brain of Karen Ann Quinlan -- The Role of the Thalamus in the Persistent Vegetative State. New England Journal of Medicine, 330(21), 1469-1475. doi:10.1056/nejm199405263302101Saeeduddin Ahmed, Rex Bierley, Java. (2000). Post-traumatic amnesia after closed head injury: a review of the literature and some suggestions for further research. Brain Injury, 14(9), 765-780. doi:10.1080/026990500421886Wilson, J. T., Hadley, D. M., Wiedmann, K. D., & Teasdale, G. M. (1995). Neuropsychological consequences of two patterns of brain damage shown by MRI in survivors of severe head injury. Journal of Neurology, Neurosurgery & Psychiatry, 59(3), 328-331. doi:10.1136/jnnp.59.3.328Wilson, J. T., Teasdale, G. M., Hadley, D. M., Wiedmann, K. D., & Lang, D. (1994). Post-traumatic amnesia: still a valuable yardstick. Journal of Neurology, Neurosurgery & Psychiatry, 57(2), 198-201. doi:10.1136/jnnp.57.2.198Fearing, M. A., Bigler, E. D., Wilde, E. A., Johnson, J. L., Hunter, J. V., Xiaoqi Li, … Levin, H. S. (2008). Morphometric MRI Findings in the Thalamus and Brainstem in Children After Moderate to Severe Traumatic Brain Injury. Journal of Child Neurology, 23(7), 729-737. doi:10.1177/0883073808314159Little, D. M., Kraus, M. F., Joseph, J., Geary, E. K., Susmaras, T., Zhou, X. J., … Gorelick, P. B. (2010). Thalamic integrity underlies executive dysfunction in traumatic brain injury. Neurology, 74(7), 558-564. doi:10.1212/wnl.0b013e3181cff5d
    • …
    corecore