9,046 research outputs found

    Studies of Carbonaceous Materials Using Raman Spectroscopy

    Get PDF
    Various carbonaceous materials including graphene, treated biochar, and C60 were studied using Raman spectroscopy with particular attention given to the treatment process and the Raman enhancement methods. Such studies that focus on the treatment process are useful in determining the extent to which the species was affected via shifts in the Raman peaks. Previous collaborations have proven successful when multiple samples were studied and analyzed. The attempt to create a novel Raman enhancement technique via combination of two previously recorded techniques was ultimately unsuccessful but further work is necessary

    Investigating the Relationship between Small and Large Scale Test Methods for the Combustion Toxicity of Cables

    Get PDF
    This project aimed to investigate the relationship between large and small-scale testing for the combustion toxicity of cables. This was done to see if it was viable for small-scale testing to replace or act as a screening method for the large-scale test to try and reduce monetary, time and manpower costs. Also investigated was the comparison of combustion toxicity between Polyvinyl Chloride (PVC) and a selection of Low Smoke Zero Halogen (LSOH) cable materials

    Gap and channelled plasmons in tapered grooves: a review

    Get PDF
    Tapered metallic grooves have been shown to support plasmons -- electromagnetically coupled oscillations of free electrons at metal-dielectric interfaces -- across a variety of configurations and V-like profiles. Such plasmons may be divided into two categories: gap-surface plasmons (GSPs) that are confined laterally between the tapered groove sidewalls and propagate either along the groove axis or normal to the planar surface, and channelled plasmon polaritons (CPPs) that occupy the tapered groove profile and propagate exclusively along the groove axis. Both GSPs and CPPs exhibit an assortment of unique properties that are highly suited to a broad range of cutting-edge nanoplasmonic technologies, including ultracompact photonic circuits, quantum-optics components, enhanced lab-on-a-chip devices, efficient light-absorbing surfaces and advanced optical filters, while additionally affording a niche platform to explore the fundamental science of plasmon excitations and their interactions. In this Review, we provide a research status update of plasmons in tapered grooves, starting with a presentation of the theory and important features of GSPs and CPPs, and follow with an overview of the broad range of applications they enable or improve. We cover the techniques that can fabricate tapered groove structures, in particular highlighting wafer-scale production methods, and outline the various photon- and electron-based approaches that can be used to launch and study GSPs and CPPs. We conclude with a discussion of the challenges that remain for further developing plasmonic tapered-groove devices, and consider the future directions offered by this select yet potentially far-reaching topic area.Comment: 32 pages, 34 figure

    Laser optical separation of chiral molecules

    Get PDF
    The optical trapping of molecules with an off-resonant laser beam involves a forward-Rayleigh scattering mechanism. It is shown that discriminatory effects arise on irradiating chiral molecules with circularly polarized light; the complete representation requires ensemble-weighted averaging to account for the influence of the trapping beam on the distribution of molecular orientations. Results of general application enable comparisons to be drawn between the results for two limits of the input laser intensity. It emerges that, in a racemic mixture, there is a differential driving force whose effect, at high laser intensities, is to produce differing local concentrations of the two enantiomers

    Solar Electric Propulsion Vehicle Demonstration to Support Future Space Exploration Missions

    Get PDF
    Human and robotic exploration beyond Low Earth Orbit (LEO) will require enabling capabilities that are efficient, affordable, and reliable. Solar Electric Propulsion (SEP) is highly advantageous because of its favorable in-space mass transfer efficiency compared to traditional chemical propulsion systems. The NASA studies have demonstrated that this advantage becomes highly significant as missions progress beyond Earth orbit. Recent studies of human exploration missions and architectures evaluated the capabilities needed to perform a variety of human exploration missions including missions to Near Earth Objects (NEOs). The studies demonstrated that SEP stages have potential to be the most cost effective solution to perform beyond LEO transfers of high mass cargoes for human missions. Recognizing that these missions require power levels more than 10X greater than current electric propulsion systems, NASA embarked upon a progressive pathway to identify critical technologies needed and a plan for an incremental demonstration mission. The NASA studies identified a 30kW class demonstration mission that can serve as a meaningful demonstration of the technologies, operational challenges, and provide the appropriate scaling and modularity required. This paper describes the planning options for a representative demonstration 30kW class SEP mission

    The COOH-terminal domain of agrin signals via a synaptic receptor in central nervous system neurons

    Get PDF
    Agrin is a motor neuron–derived factor that directs formation of the postsynaptic apparatus of the neuromuscular junction. Agrin is also expressed in the brain, raising the possibility that it might serve a related function at neuron–neuron synapses. Previously, we identified an agrin signaling pathway in central nervous system (CNS) neurons, establishing the existence of a neural receptor that mediates responses to agrin. As a step toward identifying this agrin receptor, we have characterized the minimal domains in agrin that bind and activate it. Structures required for agrin signaling in CNS neurons are contained within a 20-kD COOH-terminal fragment of the protein. Agrin signaling is independent of alternative splicing at the z site, but requires sequences that flank it because their deletion results in a 15-kD fragment that acts as an agrin antagonist. Thus, distinct regions within agrin are responsible for receptor binding and activation. Using the minimal agrin fragments as affinity probes, we also studied the expression of the agrin receptor on CNS neurons. Our results show that both agrin and its receptor are concentrated at neuron–neuron synapses. These data support the hypothesis that agrin plays a role in formation and/or function of CNS synapses

    Influence of Cytomatrix Proteins on Water and on Ions in Cells

    Get PDF
    This review concerns the influence that cytomatrix proteins have on the motional properties of water and on the major inorganic ions in cells. The techniques we used for study of water in cells and on the cytomatrix proteins include: pulsed NMR of water protons, quench cooled ice crystal imprint size, and osmotic behavior. The technique for study of ions involved use of electron-probe X-ray microanalysis of thin cryosections of cells. The cytomatrix was found to play the major role in determining the extent of hydration water in cells, The amount of hydration water varied greatly between cell types (e.g., lens fiber cells have no detectable bulk water) and varied in the same cell type studied under different states (e.g., unfertilized and fertilized sea urchin eggs). Aggregation of cytomatrix proteins (actin in particular) is a determinant of the extent of hydration water in cells. Hydration water appears not to participate in the ideal osmotic equation of van\u27t Hoff. The ionic content of cells does not accurately predict the chemical activity of the ions in cytoplasm. A major proportion of intracellular K+ and a substantial fraction of Cl- was found to be influenced by the cytomatrix such that their diffusion was impaired. The cytomatrix is responsible for the decreased motional properties of a substantial portion of cellular water and ions

    An Improved Method for Estimating the Masses of Stars with Transiting Planets

    Get PDF
    To determine the physical parameters of a transiting planet and its host star from photometric and spectroscopic analysis, it is essential to independently measure the stellar mass. This is often achieved by the use of evolutionary tracks and isochrones, but the mass result is only as reliable as the models used. The recent paper by Torres et al (2009) showed that accurate values for stellar masses and radii could be obtained from a calibration using T_eff, log g and [Fe/H]. We investigate whether a similarly good calibration can be obtained by substituting log rho - the fundamental parameter measured for the host star of a transiting planet - for log g, and apply this to star-exoplanet systems. We perform a polynomial fit to stellar binary data provided in Torres et al (2009) to obtain the stellar mass and radius as functions of T_eff, log rho and [Fe/H], with uncertainties on the fit produced from a Monte Carlo analysis. We apply the resulting equations to measurements for seventeen SuperWASP host stars, and also demonstrate the application of the calibration in a Markov Chain Monte Carlo analysis to obtain accurate system parameters where spectroscopic estimates of effective stellar temperature and metallicity are available. We show that the calibration using log rho produces accurate values for the stellar masses and radii; we obtain masses and radii of the SuperWASP stars in good agreement with isochrone analysis results. We ascertain that the mass calibration is robust against uncertainties resulting from poor photometry, although a good estimate of stellar radius requires good-quality transit light curve to determine the duration of ingress and egress.Comment: 5 pages, 2 figures, accepted for publication in A&
    • 

    corecore