117 research outputs found

    The role of facial movements in emotion recognition

    Get PDF
    Most past research on emotion recognition has used photographs of posed expressions intended to depict the apex of the emotional display. Although these studies have provided important insights into how emotions are perceived in the face, they necessarily leave out any role of dynamic information. In this Review, we synthesize evidence from vision science, affective science and neuroscience to ask when, how and why dynamic information contributes to emotion recognition, beyond the information conveyed in static images. Dynamic displays offer distinctive temporal information such as the direction, quality and speed of movement, which recruit higher-level cognitive processes and support social and emotional inferences that enhance judgements of facial affect. The positive influence of dynamic information on emotion recognition is most evident in suboptimal conditions when observers are impaired and/or facial expressions are degraded or subtle. Dynamic displays further recruit early attentional and motivational resources in the perceiver, facilitating the prompt detection and prediction of others’ emotional states, with benefits for social interaction. Finally, because emotions can be expressed in various modalities, we examine the multimodal integration of dynamic and static cues across different channels, and conclude with suggestions for future research

    Predominance of exotic and introduced species among sturgeons captured from the Baltic and North Seas and their watersheds, 1981-1999

    Get PDF
    Sturgeon catches (n = 256) from 1981-1999 reported mainly by commercial fishermen and anglers in German, Polish, and Dutch coastal waters and tributaries were analysed. During the study period, 20 % of catches were reported from coastal waters and 65 % from rivers and estuaries of large river systems, including the Odra, Elbe, Rhine and Weser. The data indicate that, from 1981- 1993, there was a major decline in the Atlantic sturgeon Acipenser sturio L., 1758, and an increase in the total catches of non-indigenous sturgeon species. The Siberian sturgeon Acipenser baerii Brandt, 1869, the Russian sturgeon Acipenser gueldenstaedtii Brandt & Ratzeberg, 1833, and various hybrids dominated. Occasional catches of the white sturgeon Acipenser transmontanus Richardson, 1836 and the sterlet Acipenser ruthenus L., 1758 were also reported. During the study period, significant changes in species composition and distribution of catches were observed. The predominance of non-indigenous sturgeon species is a result of the increasingly intensive sturgeon aquaculture activities in Germany, Poland, and the Netherlands. The most frequently reared species now dominate the catches. In addition to these escapees from fish farms, several intentional releases of sturgeons were reported. The results show that introduced exotic sturgeon species may thrive under certain natural conditions. Therefore, they may interfere with restoration efforts for the native A. sturio, competing for habitat and introducing diseases and hybridization.Se analizaron las capturas de esturiones (n = 256) entre 1981 y 1999 proporcionadas principalmente por pescadores profesionales y deportivos en las costas alemanas, polacas y holandesas, y en los sistemas fluviales que desembocan en ellas. En el periodo de estudio, el 20 % de las capturas correspondió a aguas litorales y el 65 % a ríos y estuarios de los grandes sistemas fluviales, incluidos los ríos Oder, Elba, Rin y Weser. Los datos indican que entre 1981 y 1993 tuvo lugar el mayor declive del esturión atlántico Acipenser sturio L., 1758 y un incremento en las capturas totales de las especies alóctonas de esturiones. Predominaron las capturas de esturión siberiano Acipenser baerii Brandt, 1869, esturión ruso Acipenser gueldenstaedtii Brandt & Ratzeberg, 1833 y varios híbridos. También se registraron capturas ocasionales de esturión blanco Acipenser transmontanus Richardson, 1836 y esterlete Acipenser ruthenus L., 1758. En el periodo de estudio se observaron cambios significativos en la composición de especies y en la distribución de las capturas. El predominio de las especies alóctonas de esturiones es el resultado de las crecientes actividades en la acuicultura intensiva de esturión en Alemania, Polonia y Países Bajos. Las especies cultivadas más frecuentemente dominan ahora las capturas. Además de estas fugas de las piscifactorías, se han registrado varias sueltas intencionadas. Los resultados muestran que las especies de esturiones exóticas introducidas pueden prosperar en ciertas condiciones naturales. Por esta razón, pueden interferir en los esfuerzos de restauración de la especie autóctona A. sturio, compitiendo por el hábitat e introduciendo enfermedades e hibridación.Instituto Español de Oceanografí

    R270C polymorphism leads to loss of function of the canine P2X7 receptor

    Get PDF
    The relative function of the P2X7 receptor, an ATP-gated ion channel, varies between humans due to polymorphisms in the P2RX7 gene. This study aimed to assess the functional impact of P2X7 variation in a random sample of the canine population. Blood and genomic DNA were obtained from 69 dogs selected as representatives of a cross section of different breeds. P2X7 function was determined by flow cytometric measurements of dye uptake and patch-clamp measurements of inward currents. P2X7 expression was determined by immunoblotting and immunocytochemistry. Sequencing was used to identify P2RX7 gene polymorphisms. P2X7 was cloned from an English springer spaniel, and point mutations were introduced into this receptor by site-directed mutagenesis. The relative function of P2X7 on monocytes varied between individual dogs. The canine P2RX7 gene encoded four missense polymorphisms: F103L and P452S, found in heterozygous and homozygous dosage, and R270C and R365Q, found only in heterozygous dosage. Moreover, R270C and R365Q were associated with the cocker spaniel and Labrador retriever, respectively. F103L, R270C, and R365Q but not P452S corresponded to decreased P2X7 function in monocytes but did not explain the majority of differences in P2X7 function between dogs, indicating that other factors contribute to this variability. Heterologous expression of site-directed mutants of P2X7 in human embryonic kidney-293 cells indicated that the R270C mutant was nonfunctional, the F103L and R365Q mutants had partly reduced function, and the P452S mutant functioned normally. Taken together, these data highlight that a R270C polymorphism has major functional impact on canine P2X7

    Neurochemical Characterization of Body Weight-Regulating Leptin Receptor Neurons in the Nucleus of the Solitary Tract

    Get PDF
    The action of peripherally released leptin at long-form leptin receptors (LepRb) within the brain represents a fundamental axis in the regulation of energy homeostasis and body weight. Efforts to delineate the neuronal mediators of leptin action have recently focused on extrahypothalamic populations and have revealed that leptin action within the nucleus of the solitary tract (NTS) is critical for normal appetite and body weight regulation. To elucidate the neuronal circuits that mediate leptin action within the NTS, we employed multiple transgenic reporter lines to characterize the neurochemical identity of LepRb-expressing NTS neurons. LepRb expression was not detected in energy balance-associated NTS neurons that express cocaine- and amphetamine-regulated transcript, brain-derived neurotrophic factor, neuropeptide Y, nesfatin, catecholamines, γ-aminobutyric acid, prolactin-releasing peptide, or nitric oxide synthase. The population of LepRb-expressing NTS neurons was comprised of subpopulations marked by a proopiomelanocortin-enhanced green fluorescent protein (EGFP) transgene and distinct populations that express proglucagon and/or cholecystokinin. The significance of leptin action on these three populations of NTS neurons was assessed in leptin-deficient Ob/Ob mice, revealing increased NTS proglucagon and cholecystokinin, but not proopiomelanocortin, expression. These data provide new insight into the appetitive brainstem circuits engaged by leptin

    Oxygen-sensing neurons reciprocally regulate peripheral lipid metabolism via neuropeptide signaling in <i>Caenorhabditis elegans</i>

    Get PDF
    <div><p>The mechanisms by which the sensory environment influences metabolic homeostasis remains poorly understood. In this report, we show that oxygen, a potent environmental signal, is an important regulator of whole body lipid metabolism. <i>C</i>. <i>elegans</i> oxygen-sensing neurons reciprocally regulate peripheral lipid metabolism under normoxia in the following way: under high oxygen and food absence, URX sensory neurons are activated, and stimulate fat loss in the intestine, the major metabolic organ for <i>C</i>. <i>elegans</i>. Under lower oxygen conditions or when food is present, the BAG sensory neurons respond by repressing the resting properties of the URX neurons. A genetic screen to identify modulators of this effect led to the identification of a BAG-neuron-specific neuropeptide called FLP-17, whose cognate receptor EGL-6 functions in URX neurons. Thus, BAG sensory neurons counterbalance the metabolic effect of tonically active URX neurons via neuropeptide communication. The combined regulatory actions of these neurons serve to precisely tune the rate and extent of fat loss to the availability of food and oxygen, and provides an interesting example of the myriad mechanisms underlying homeostatic control.</p></div

    Caprin Controls Follicle Stem Cell Fate in the Drosophila Ovary

    Get PDF
    Adult stem cells must balance self-renewal and differentiation for tissue homeostasis. The Drosophila ovary has provided a wealth of information about the extrinsic niche signals and intrinsic molecular processes required to ensure appropriate germline stem cell renewal and differentiation. The factors controlling behavior of the more recently identified follicle stem cells of the ovary are less well-understood but equally important for fertility. Here we report that translational regulators play a critical role in controlling these cells. Specifically, the translational regulator Caprin (Capr) is required in the follicle stem cell lineage to ensure maintenance of this stem cell population and proper encapsulation of developing germ cells by follicle stem cell progeny. In addition, reduction of one copy of the gene fmr1, encoding the translational regulator Fragile X Mental Retardation Protein, exacerbates the Capr encapsulation phenotype, suggesting Capr and fmr1 are regulating a common process. Caprin was previously characterized in vertebrates as Cytoplasmic Activation/Proliferation-Associated Protein. Significantly, we find that loss of Caprin alters the dynamics of the cell cycle, and we present evidence that misregulation of CycB contributes to the disruption in behavior of follicle stem cell progeny. Our findings support the idea that translational regulators may provide a conserved mechanism for oversight of developmentally critical cell cycles such as those in stem cell populations

    Dehydration of subducting slow-spread oceanic lithosphere in the Lesser Antilles

    Get PDF
    Subducting slabs carry water into the mantle and are a major gateway in the global geochemical water cycle. Fluid transport and release can be constrained with seismological data. Here we use joint active-source/local-earthquake seismic tomography to derive unprecedented constraints on multi-stage fluid release from subducting slow-spread oceanic lithosphere. We image the low P-wave velocity crustal layer on the slab top and show that it disappears beneath 60–100 km depth, marking the depth of dehydration metamorphism and eclogitization. Clustering of seismicity at 120–160 km depth suggests that the slab’s mantle dehydrates beneath the volcanic arc, and may be the main source of fluids triggering arc magma generation. Lateral variations in seismic properties on the slab surface suggest that serpentinized peridotite exhumed in tectonized slow-spread crust near fracture zones may increase water transport to sub-arc depths. This results in heterogeneous water release and directly impacts earthquakes generation and mantle wedge dynamics

    A wake-active locomotion circuit depolarizes a sleep-active neuron to switch on sleep

    Get PDF
    Sleep-active neurons depolarize during sleep to suppress wakefulness circuits. Wake-active wake-promoting neurons in turn shut down sleep-active neurons, thus forming a bipartite flip-flop switch. However, how sleep is switched on is unclear because it is not known how wakefulness is translated into sleep-active neuron depolarization when the system is set to sleep. Using optogenetics in Caenorhabditis elegans, we solved the presynaptic circuit for depolarization of the sleep-active RIS neuron during developmentally regulated sleep, also known as lethargus. Surprisingly, we found that RIS activation requires neurons that have known roles in wakefulness and locomotion behavior. The RIM interneurons-which are active during and can induce reverse locomotion-play a complex role and can act as inhibitors of RIS when they are strongly depolarized and as activators of RIS when they are modestly depolarized. The PVC command interneurons, which are known to promote forward locomotion during wakefulness, act as major activators of RIS. The properties of these locomotion neurons are modulated during lethargus. The RIMs become less excitable. The PVCs become resistant to inhibition and have an increased capacity to activate RIS. Separate activation of neither the PVCs nor the RIMs appears to be sufficient for sleep induction; instead, our data suggest that they act in concert to activate RIS. Forward and reverse circuit activity is normally mutually exclusive. Our data suggest that RIS may be activated at the transition between forward and reverse locomotion states, perhaps when both forward (PVC) and reverse (including RIM) circuit activity overlap. While RIS is not strongly activated outside of lethargus, altered activity of the locomotion interneurons during lethargus favors strong RIS activation and thus sleep. The control of sleep-active neurons by locomotion circuits suggests that sleep control may have evolved from locomotion control. The flip-flop sleep switch in C. elegans thus requires an additional component, wake-active sleep-promoting neurons that translate wakefulness into the depolarization of a sleep-active neuron when the worm is sleepy. Wake-active sleep-promoting circuits may also be required for sleep state switching in other animals, including in mammals
    • …
    corecore