702 research outputs found

    Resource consumption and process performance in minimum quantity lubricated milling of tool steel

    Get PDF
    The use of cutting fluids has driven performance improvements in metal machining. However these fluids have drawbacks including resources consumed and possible negative environmental consequences. Thus the study of coolant delivery rates is important. This work investigated the use of minimum quantity lubrication (MQL) in solid carbide milling of tool steel. A tool life improvement of 60 percent was demonstrated in comparison to dry cutting. Based on measurements and calculations made, MQL consumed cutting fluid at a rate less than 5 percent of that of a typical flooding coolant system, and was a low-consumption option in terms of electrical power

    On the relevance of chaos for halo stars in the solar neighbourhood II

    Get PDF
    In a previous paper based on dark matter only simulations we show that, in the approximation of an analytic and static potential describing the strongly triaxial and cuspy shape of Milky Way-sized haloes, diffusion due to chaotic mixing in the neighbourhood of the Sun does not efficiently erase phase space signatures of past accretion events. In this second paper we further explore the effect of chaotic mixing using multicomponent Galactic potential models and solar neighbourhood-like volumes extracted from fully cosmological hydrodynamic simulations, thus naturally accounting for the gravitational potential associated with baryonic components, such as the bulge and disc. Despite the strong change in the global Galactic potentials with respect to those obtained in dark matter only simulations, our results confirm that a large fraction of halo particles evolving on chaotic orbits exhibit their chaotic behaviour after periods of time significantly larger than a Hubble time. In addition, significant diffusion in phase space is not observed on those particles that do exhibit chaotic behaviour within a Hubble time

    Spectral networks

    Full text link
    We introduce new geometric objects called spectral networks. Spectral networks are networks of trajectories on Riemann surfaces obeying certain local rules. Spectral networks arise naturally in four-dimensional N=2 theories coupled to surface defects, particularly the theories of class S. In these theories spectral networks provide a useful tool for the computation of BPS degeneracies: the network directly determines the degeneracies of solitons living on the surface defect, which in turn determine the degeneracies for particles living in the 4d bulk. Spectral networks also lead to a new map between flat GL(K,C) connections on a two-dimensional surface C and flat abelian connections on an appropriate branched cover Sigma of C. This construction produces natural coordinate systems on moduli spaces of flat GL(K,C) connections on C, which we conjecture are cluster coordinate systems.Comment: 87 pages, 48 figures; v2: typos, correction to general rule for signs of BPS count

    Role of Orbital Degeneracy in Double Exchange Systems

    Full text link
    We investigate the role of orbital degeneracy in the double exchange (DE) model. In the JH→∞J_{H}\to\infty limit, an effective generalized ``Hubbard'' model incorporating orbital pseudospin degrees of freedom is derived. The model possesses an exact solution in one- and in infinite dimensions. In 1D, the metallic phase off ``half-filling'' is a Luttinger liquid with pseudospin-charge separation. Using the d=∞d=\infty solution for our effective model, we show how many experimental observations for the well-doped (x≃0.3x\simeq 0.3) three-dimensional manganites La1−xSrxMnO3La_{1-x}Sr_{x}MnO_{3} can be qualitatively explained by invoking the role of orbital degeneracy in the DE model.Comment: 8 pages, 2 figures, submitted to Phys. Rev.

    Interior Structure of a Charged Spinning Black Hole in (2+1)(2+1)-Dimensions

    Full text link
    The phenomenon of mass inflation is shown to occur for a rotating black hole. We demonstrate this feature in (2+1)(2+1) dimensions by extending the charged spinning BTZ black hole to Vaidya form. We find that the mass function diverges in a manner quantitatively similar to its static counterparts in (3+1)(3+1), (2+1)(2+1) and (1+1)(1+1) dimensions.Comment: 5 pages, 2 figures (appended as postscript files), WATPHYS-TH94/0

    Aurigaia: mock Gaia DR2 stellar catalogues from the Auriga cosmological simulations

    Get PDF
    We present and analyse mock stellar catalogues that match the selection criteria and observables (including uncertainties) of the Gaia satellite data release 2 (DR2). The source are six cosmological high-resolution magneto-hydrodynamic ΛCDM zoom simulations of the formation of Milky Way analogues from the AURIGA project. Mock data are provided for stars with V 20 deg. The mock catalogues are made using two different methods: the public SNAPDRAGONS code, and a method based on that of Lowing et al. (2015) that preserves the phase-space distribution of the model stars. These publicly available catalogues contain five-parameter astrometry, radial velocities, multiband photometry, stellar parameters, dust extinction values, and uncertainties in all these quantities. In addition, we provide the gravitational potential and information on the origin of each star. By way of demonstration, we apply the mock catalogues to analyses of the young stellar disc and the stellar halo. We show that (i) the young outer stellar disc exhibits a flared distribution that is detectable in the height and vertical velocity distribution of A - and B -dwarf stars up to radii of ∌15 kpc, and (ii) the spin of the stellar halo out to 100 kpc can be accurately measured with Gaia DR2 RR Lyrae stars. These catalogues are well suited for comparisons with observations and should help to (i) develop and test analysis methods for the Gaia DR2 data, (ii) gauge the limitations and biases of the data, and (iii) interpret the data in the light of theoretical predictions from realistic ab initio simulations of galaxy formation in the ΛCDM cosmological model

    ALMA and Herschel reveal that AGN and main-sequence galaxies have different star formation rate distributions

    Get PDF
    Using deep Herschel and ALMA observations, we investigate the star formation rate (SFR) distributions of X-ray AGN host galaxies at 0.5<z<1.5 and 1.5<z<4, comparing them to that of normal, star-forming (i.e., "main-sequence", or MS) galaxies. We find 34-55 per cent of AGNs have SFRs at least a factor of two below that of the average MS galaxy, compared to ~15 per cent of all MS galaxies, suggesting significantly different SFR distributions. Indeed, when both are modelled as log-normal distributions, the mass and redshift-normalised SFR distributions of AGNs are roughly twice as broad, and peak ~0.4 dex lower, than that of MS galaxies. However, like MS galaxies, the normalised SFR distribution of AGNs appears not to evolve with redshift. Despite AGNs and MS galaxies having different SFR distributions, the linear-mean SFR of AGNs derived from our distributions is remarkably consistent with that of MS galaxies, and thus with previous results derived from stacked Herschel data. This apparent contradiction is due to the linear-mean SFR being biased by bright outliers, and thus does not necessarily represent a true characterisation of the typical SFR of AGNs
    • 

    corecore