231 research outputs found

    The role of myths in students discussing ‘pest’–agriculture relations

    Get PDF
    Socio-scientific issues and socially acute questions enable moral judgement through rational, emotional, intuitive and imaginative thinkings. Our research focuses more specifically on the place of the myth in student discussions about controversial issues. We have analysed the mythemes expressed through online exchanges between students from England, France and New Zealand about three ‘pest’–animal issues, the ‘pests’ in question being the Badger (England), Wolf (France) and Possum (New Zealand). We observe the expression of recurrent mythemes by issue, one demonizing the animal and encouraging its destruction or control, one protecting its proper nature, one ambivalent proposing a dialogue between the two first ones. These expressions relate to the living socio-cultural contexts of the students. The mytheme expressed by each student remains stable during the discussion. The potential of myths to enable critical thinking in intercultural communication is discussed

    Functional Implications of RFRP-3 in the Central Control of Daily and Seasonal Rhythms in Reproduction

    Get PDF
    Adaptation of reproductive activity to environmental changes is essential for breeding success and offspring survival. In mammals, the reproductive system displays regular cycles of activation and inactivation which are synchronized with seasonal and/or daily rhythms in environmental factors, notably light intensity and duration. Thus, most species adapt their breeding activity along the year to ensure that birth and weaning of the offspring occur at a time when resources are optimal. Additionally, female reproductive activity is highest at the beginning of the active phase during the period of full oocyte maturation, in order to improve breeding success. In reproductive physiology, it is therefore fundamental to delineate how geophysical signals are integrated in the hypothalamo-pituitary-gonadal axis, notably by the neurons expressing gonadotropin releasing hormone (GnRH). Several neurochemicals have been reported to regulate GnRH neuronal activity, but recently two hypothalamic neuropeptides belonging to the superfamily of (Arg)(Phe)-amide peptides, RFRP-3 and kisspeptin, have emerged as critical for the integration of environmental cues within the reproductive axis. The goal of this review is to survey the current understanding of the role played by RFRP-3 in the temporal regulation of reproduction, and consider how its effect might combine with that of kisspeptin to improve the synchronization of reproduction to environmental challenges

    Agrometerological study of semi-arid areas : an experiment for analysing the potential of time series of FORMOSAT-2 images (Tensift-Marrakech plain)

    Get PDF
    Earth Observing Systems designed to provide both high spatial resolution (10m) and high capacity of time revisit (a few days) offer strong opportunities for the management of agricultural water resources. The FORMOSAT-2 satellite is the first and only satellite with the ability to provide daily high-resolution images over a particular area with constant viewing angles. As part of the SudMed project, one of the first time series of FORMOSAT-2 images has been acquired over the semi-arid Tensift-Marrakech plain. Along with these acquisitions, an experimental data set has been collected to monitor land-cover/land-use, soil characteristics, vegetation dynamics and surface fluxes. This paper presents a first analysis of the potential of these data for agrometerological study of semi-arid areas

    Science and society in education

    Get PDF
    This booklet is for teachers who want to expand their teaching approaches to include socio-scientific issues which enrich and give meaning to core scientific principles. It is meant to enhance young people’s curiosity about the social and scientific world and raise important questions about issues which affect their lives. We call this approach Socio-Scientific Inquiry-Based Learning, or ‘SSIBL’ for short. Chapters 1 and 2 present an introduction to the theoretical background of SSIBL. In chapter 3, SSIBL will be approached from a classroom perspective, providing a simplified version of the framework and showing teaching examples

    Food-anticipatory activity in Syrian hamsters: behavioral and molecular responses in the hypothalamus according to photoperiodic conditions.

    Get PDF
    When food availability is restricted, animals adjust their behavior according to the timing of food access. Most rodents, such as rats and mice, and a wide number of other animals express before timed food access a bout of activity, defined as food-anticipatory activity (FAA). One notable exception amongst rodents is the Syrian hamster, a photoperiodic species that is not prone to express FAA. The present study was designed to understand the reasons for the low FAA in that species. First, we used both wheel-running activity and general cage activity to assess locomotor behavior. Second, the possible effects of photoperiod was tested by challenging hamsters with restricted feeding under long (LP) or short (SP) photoperiods. Third, because daytime light may inhibit voluntary activity, hamsters were also exposed to successive steps of full and skeleton photoperiods (two 1-h light pulses simulating dawn and dusk). When hamsters were exposed to skeleton photoperiods, not full photoperiod, they expressed FAA in the wheel independently of daylength, indicating that FAA in the wheel is masked by daytime light under full photoperiods. During FAA under skeleton photoperiods, c-Fos expression was increased in the arcuate nuclei independently of the photoperiod, but differentially increased in the ventromedial and dorsomedial hypothalamic nuclei according to the photoperiod. FAA in general activity was hardly modulated by daytime light, but was reduced under SP. Together, these findings show that food-restricted Syrian hamsters are not prone to display FAA under common laboratory conditions, because of the presence of light during daytime that suppresses FAA expression in the wheel.journal articleresearch support, non-u.s. gov't20152015 05 13importedFunding: This work was supported by doctoral scholarship from Fundação de Amparo à Pesquisa do Estado do São Paulo (São Paulo State, Brazil) to RFDF, and by Centre National de la Recherche Scientifique and University of Strasbourg (France) to EC, VS and PP

    Identification of Pathway-Biased and Deleterious Melatonin Receptor Mutants in Autism Spectrum Disorders and in the General Population

    Get PDF
    Melatonin is a powerful antioxidant and a synchronizer of many physiological processes. Alteration of the melatonin pathway has been reported in circadian disorders, diabetes and autism spectrum disorders (ASD). However, very little is known about the genetic variability of melatonin receptors in humans. Here, we sequenced the melatonin receptor MTNR1A and MTNR1B, genes coding for MT1 and MT2 receptors, respectively, in a large panel of 941 individuals including 295 patients with ASD, 362 controls and 284 individuals from different ethnic backgrounds. We also sequenced GPR50, coding for the orphan melatonin-related receptor GPR50 in patients and controls. We identified six non-synonymous mutations for MTNR1A and ten for MTNR1B. The majority of these variations altered receptor function. Particularly interesting mutants are MT1-I49N, which is devoid of any melatonin binding and cell surface expression, and MT1-G166E and MT1-I212T, which showed severely impaired cell surface expression. Of note, several mutants possessed pathway-selective signaling properties, some preferentially inhibiting the adenylyl cyclase pathway, others preferentially activating the MAPK pathway. The prevalence of these deleterious mutations in cases and controls indicates that they do not represent major risk factor for ASD (MTNR1A case 3.6% vs controls 4.4%; MTNR1B case 4.7% vs 3% controls). Concerning GPR50, we detected a significant association between ASD and two variations, Δ502–505 and T532A, in affected males, but it did not hold up after Bonferonni correction for multiple testing. Our results represent the first functional ascertainment of melatonin receptors in humans and constitute a basis for future structure-function studies and for interpreting genetic data on the melatonin pathway in patients

    The effect of an intracerebroventricular injection of metformin or AICAR on the plasma concentrations of melatonin in the ewe: potential involvement of AMPK?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It is now widely accepted that AMP-activated protein kinase (AMPK) is a critical regulator of energy homeostasis. Recently, it has been shown to regulate circadian clocks. In seasonal breeding species such as sheep, the circadian clock controls the secretion of an endogenous rhythm of melatonin and, as a consequence, is probably involved in the generation of seasonal rhythms of reproduction. Considering this, we identified the presence of the subunits of AMPK in different hypothalamic nuclei involved in the pre- and post-pineal pathways that control seasonality of reproduction in the ewe and we investigated if the intracerebroventricular (i.c.v.) injection of two activators of AMPK, metformin and AICAR, affected the circadian rhythm of melatonin in ewes that were housed in constant darkness. In parallel the secretion of insulin was monitored as a peripheral metabolic marker. We also investigated the effects of i.c.v. AICAR on the phosphorylation of AMPK and acetyl-CoA carboxylase (ACC), a downstream target of AMPK, in brain structures along the photoneuroendocrine pathway to the pineal gland.</p> <p>Results</p> <p>All the subunits of AMPK that we studied were identified in all brain areas that were dissected but with some differences in their level of expression among structures. Metformin and AICAR both reduced (p < 0.001 and p < 0.01 respectively) the amplitude of the circadian rhythm of melatonin secretion independently of insulin secretion. The i.c.v. injection of AICAR only tended (p = 0.1) to increase the levels of phosphorylated AMPK in the paraventricular nucleus but significantly increased the levels of phosphorylated ACC in the paraventricular nucleus (p < 0.001) and in the pineal gland (p < 0.05).</p> <p>Conclusions</p> <p>Taken together, these results suggest a potential role for AMPK on the secretion of melatonin probably acting trough the paraventricular nucleus and/or directly in the pineal gland. We conclude that AMPK may act as a metabolic cue to modulate the rhythm of melatonin secretion.</p
    corecore