6,216 research outputs found

    Construction and Performance of a Micro-Pattern Stereo Detector with Two Gas Electron Multipliers

    Get PDF
    The construction of a micro-pattern gas detector of dimensions 40x10 cm**2 is described. Two gas electron multiplier foils (GEM) provide the internal amplification stages. A two-layer readout structure was used, manufactured in the same technology as the GEM foils. The strips of each layer cross at an effective crossing angle of 6.7 degrees and have a 406 um pitch. The performance of the detector has been evaluated in a muon beam at CERN using a silicon telescope as reference system. The position resolutions of two orthogonal coordinates are measured to be 50 um and 1 mm, respectively. The muon detection efficiency for two-dimensional space points reaches 96%.Comment: 21 pages, 17 figure

    Ground-State Electromagnetic Moments of Calcium Isotopes

    Get PDF
    High-resolution bunched-beam collinear laser spectroscopy was used to measure the optical hyperfine spectra of the 43−51^{43-51}Ca isotopes. The ground state magnetic moments of 49,51^{49,51}Ca and quadrupole moments of 47,49,51^{47,49,51}Ca were measured for the first time, and the 51^{51}Ca ground state spin I=3/2I=3/2 was determined in a model-independent way. Our results provide a critical test of modern nuclear theories based on shell-model calculations using phenomenological as well as microscopic interactions. The results for the neutron-rich isotopes are in excellent agreement with predictions using interactions derived from chiral effective field theory including three-nucleon forces, while lighter isotopes illustrate the presence of particle-hole excitations of the 40^{40}Ca core in their ground state.Comment: Accepted as a Rapid Communication in Physical Review

    Certainty Closure: Reliable Constraint Reasoning with Incomplete or Erroneous Data

    Full text link
    Constraint Programming (CP) has proved an effective paradigm to model and solve difficult combinatorial satisfaction and optimisation problems from disparate domains. Many such problems arising from the commercial world are permeated by data uncertainty. Existing CP approaches that accommodate uncertainty are less suited to uncertainty arising due to incomplete and erroneous data, because they do not build reliable models and solutions guaranteed to address the user's genuine problem as she perceives it. Other fields such as reliable computation offer combinations of models and associated methods to handle these types of uncertain data, but lack an expressive framework characterising the resolution methodology independently of the model. We present a unifying framework that extends the CP formalism in both model and solutions, to tackle ill-defined combinatorial problems with incomplete or erroneous data. The certainty closure framework brings together modelling and solving methodologies from different fields into the CP paradigm to provide reliable and efficient approches for uncertain constraint problems. We demonstrate the applicability of the framework on a case study in network diagnosis. We define resolution forms that give generic templates, and their associated operational semantics, to derive practical solution methods for reliable solutions.Comment: Revised versio

    In vitro efficacy and safety of a system for sorbent-assisted peritoneal dialysis

    Get PDF
    In vitro efficacy and safety of a system for sorbent-assisted peritoneal dialysis. Am J Physiol Renal Physiol 319: F162-F170, 2020. First published June 1, 2020; doi:10.1152/ajprenal. 00079.2020.-A system for sorbent-assisted peritoneal dialysis (SAPD) was designed to continuously recirculate dialysate via a tidal mode using a single lumen peritoneal catheter with regeneration of spent dialysate by means of sorbent technology. We hypothesize that SAPD treatment will maintain a high plasma-to-dialysate concentration gradient and increase the mass transfer area coefficient of solutes. Thereby, the SAPD system may enhance clearance while reducing the number of exchanges. Application is envisaged at night as a bedside device (12 kg, nighttime system). A wearable system (2.0 kg, daytime system) may further enhance clearance during the day. Urea, creatinine, and phosphate removal were studied with the daytime and nighttime system (n = 3 per system) by recirculating 2 liters of spent peritoneal dialysate via a tidal mode (mean flow rate: 50 and 100 mL/min, respectively) for 8 h in vitro. Time-averaged plasma clearance over 24 h was modeled assuming one 2 liter exchange/day, an increase in mass transfer area coefficient, and 0.9 liters ultrafiltration/day. Urea, creatinine, and phosphate removal was 33.2 ± 4.1, 5.3 ± 0.5, and 6.2 ± 1.8 mmol, respectively, with the daytime system and 204 ± 28, 10.3 ± 2.4, and 11.4 ± 2.1 mmol, respectively, with the nighttime system. Time-averaged plasma clearances of urea, creatinine and phosphate were 9.6 ± 1.1, 9.6 ± 1.7, and 7.0 ± 0.9 mL/min, respectively, with the nighttime system and 10.8 ± 1.1, 13.4 ± 1.8, and 9.7 ± 1.6 mL/min, respectively, with the daytime and nighttime system. SAPD treatment may improve removal of uremic toxins compared with conventional peritoneal dialysis, provided that peritoneal mass transport will increase

    Low-energy electric dipole response in 120Sn

    Get PDF
    The electric dipole strength in 120Sn has been extracted from proton inelastic scattering experiments at E_p = 295 MeV and at forward angles including 0 degree. Below neutron threshoild it differs from the results of a 120Sn(gamma,gamma') experiment and peaks at an excitation energy of 8.3 MeV. The total strength corresponds to 2.3(2)% of the energy-weighted sum rule and is more than three times larger than what is observed with the (gamma,gamma') reaction. This implies a strong fragmentation of the E1 strength and/or small ground state branching ratios of the excited 1- states.Comment: 7 pages, 6 figure

    Spatial and topological organization of DNA chains induced by gene co-localization

    Get PDF
    Transcriptional activity has been shown to relate to the organization of chromosomes in the eukaryotic nucleus and in the bacterial nucleoid. In particular, highly transcribed genes, RNA polymerases and transcription factors gather into discrete spatial foci called transcription factories. However, the mechanisms underlying the formation of these foci and the resulting topological order of the chromosome remain to be elucidated. Here we consider a thermodynamic framework based on a worm-like chain model of chromosomes where sparse designated sites along the DNA are able to interact whenever they are spatially close-by. This is motivated by recurrent evidence that there exists physical interactions between genes that operate together. Three important results come out of this simple framework. First, the resulting formation of transcription foci can be viewed as a micro-phase separation of the interacting sites from the rest of the DNA. In this respect, a thermodynamic analysis suggests transcription factors to be appropriate candidates for mediating the physical interactions between genes. Next, numerical simulations of the polymer reveal a rich variety of phases that are associated with different topological orderings, each providing a way to increase the local concentrations of the interacting sites. Finally, the numerical results show that both one-dimensional clustering and periodic location of the binding sites along the DNA, which have been observed in several organisms, make the spatial co-localization of multiple families of genes particularly efficient.Comment: Figures and Supplementary Material freely available on http://dx.doi.org/10.1371/journal.pcbi.100067

    Dipole polarizability of 120Sn and nuclear energy density functionals

    Full text link
    The electric dipole strength distribution in 120Sn between 5 and 22 MeV has been determined at RCNP Osaka from a polarization transfer analysis of proton inelastic scattering at E_0 = 295 MeV and forward angles including 0{\deg}. Combined with photoabsorption data an electric dipole polarizability \alpha_D(120Sn) = 8.93(36) fm^3 is extracted. The dipole polarizability as isovector observable par excellence carries direct information on the nuclear symmetry energy and its density dependence. The correlation of the new value with the well established \alpha_D(208Pb) serves as a test of its prediction by nuclear energy density functionals (EDFs). Models based on modern Skyrme interactions describe the data fairly well while most calculations based on relativistic Hamiltonians cannot.Comment: 6 pages, 4 figure

    First Glimpse of the N= 82 Shell Closure below Z= 50 from Masses of Neutron-Rich Cadmium Isotopes and Isomers

    Get PDF
    We probe the N = 82 nuclear shell closure by mass measurements of neutron-rich cadmium isotopes with the ISOLTRAP spectrometer at ISOLDE-CERN. The new mass of 132 Cd offers the first value of the N = 82 , two-neutron shell gap below Z = 50 and confirms the phenomenon of mutually enhanced magicity at 132 Sn . Using the recently implemented phase-imaging ion-cyclotron-resonance method, the ordering of the low-lying isomers in 129 Cd and their energies are determined. The new experimental findings are used to test large-scale shell-model, mean-field, and beyond-mean-field calculations, as well as the ab initio valence-space in-medium similarity renormalization group

    Grain Boundaries in Graphene on SiC(0001ˉ\bar{1}) Substrate

    Full text link
    Grain boundaries in epitaxial graphene on the SiC(0001ˉ\bar{1}) substrate are studied using scanning tunneling microscopy and spectroscopy. All investigated small-angle grain boundaries show pronounced out-of-plane buckling induced by the strain fields of constituent dislocations. The ensemble of observations allows to determine the critical misorientation angle of buckling transition θc=19± 2∘\theta_c = 19 \pm~2^\circ. Periodic structures are found among the flat large-angle grain boundaries. In particular, the observed θ=33±2∘\theta = 33\pm2^\circ highly ordered grain boundary is assigned to the previously proposed lowest formation energy structural motif composed of a continuous chain of edge-sharing alternating pentagons and heptagons. This periodic grain boundary defect is predicted to exhibit strong valley filtering of charge carriers thus promising the practical realization of all-electric valleytronic devices

    Safety of electrooxidation for urea removal in a wearable artificial kidney is compromised by formation of glucose degradation products

    Get PDF
    A major challenge for the development of a wearable artificial kidney (WAK) is the removal of urea from the spent dialysate, as urea is the waste solute with the highest daily molar production and is difficult to adsorb. Here we present results on glucose degradation products (GDPs) formed during electrooxidation (EO), a technique that applies a current to the dialysate to convert urea into nitrogen, carbon dioxide, and hydrogen gas. Uremic plasma and peritoneal effluent were dialyzed for 8 hours with a WAK with and without EO-based dialysate regeneration. Samples were taken regularly during treatment. GDPs (glyoxal, methylglyoxal, and 3-deoxyglucosone) were measured in EO- and non-EO-treated fluids. Glyoxal and methylglyoxal concentrations increased 26- and 11-fold, respectively, in uremic plasma (at [glucose] 7 mmol/L) and 209- and 353-fold, respectively, in peritoneal effluent (at [glucose] 100 mmol/L) during treatment with EO, whereas no change was observed in GDP concentrations during dialysate regeneration without EO. EO for dialysate regeneration in a WAK is currently not safe due to the generation of GDPs which are not biocompatible
    • …
    corecore