12 research outputs found
A theoretical study of the Pnma and R3m phases of Sb2S3, Bi2S3, and Sb2Se3
[EN]
We report a comparative theoretical study of the Pnma and R3m phases of Sb2S3, Bi2S3, and Sb2Se3 close to ambient pressure. Our enthalpy calculations at 0 K show that at ambient pressure the R3m (tetradymite-like) phase of Sb2Se3 is energetically more stable than the Pnma phase, contrary to what is observed for Sb2S3 and Bi2S3, and irrespective of the exchange-correlation functional employed in the calculations. The result for Sb2Se3 is in contradiction to experiments in which all three compounds are usually grown in the Pnma phase. This result is further confirmed by free-energy calculations taking into account the temperature dependence of unit-cell volumes and phonon frequencies. Lattice dynamics and elastic tensor calculations further show that both the Pnma and R3m phases of Sb2Se3 are dynamically and mechanically stable at zero applied pressure. Since these results suggest that the formation of the R3m phase of Sb2Se3 should be feasible under close to ambient conditions, we provide a theoretical crystal structure and simulated Raman and infrared spectra to help in its identification. We also discuss the results of the two published works that have claimed to have synthesized tetradymite-like Sb2Se3. Finally, the stability of the R3m phase across the three group-15 A(2)X(3) sesquichalcogenides is analysed based on their van der Waals gap and X-X in-plane geometry.This publication is part of the MALTA Consolider Team network (RED2018-102612-T) (MINECO/AEI/10.13039/501100003329), and is supported by I + D + i project PID2019-106383GB41/42/43 (MCIN/AEI/10.13039/501100011033), by the PROMETEO/2018/123(EFIMAT) and CIPROM/2021/075 (GREENMAT) projects (Generalitat Valenciana), and by the European Union Horizon 2020 research and innovation programme under a Marie Sklodowska-Curie grant agreement (785789-COMEX). E. L. d. S., A. M., and P. R.-H. acknowledge computing time provided on the MALTA-Cluster at the University of Oviedo and on the MareNostrum facility through Red Espanola de Supercomputacion (RES) with technical support provided by the Barcelona Supercomputing Center (QCM-2018-3-0032). E. L. d. S. also acknowledges the Network of Extreme Conditions Laboratories (NECL), financed by FCT and co-financed by NORTE 2020 through the Portugal 2020 and FEDER programmes. J. M. S. is grateful to UK Research and Innovation for the support of a Future Leaders Fellowship (MR/T043121/1) and to the University of Manchester for the previous support of a Presidential Fellowship.Da Silva, EL.; Skelton, JM.; Rodríguez-Hernández, P.; Muñoz, A.; Santos, MC.; Martínez-García, D.; Vilaplana Cerda, RI.... (2022). A theoretical study of the Pnma and R3m phases of Sb2S3, Bi2S3, and Sb2Se3. Journal of Materials Chemistry C. 10(40):15061-15074. https://doi.org/10.1039/d2tc01484j1506115074104
Orpiment under compression: metavalent bonding at high pressure
[EN] We report a joint experimental and theoretical study of the structural, vibrational, and electronic properties of layered monoclinic arsenic sulfide crystals (a-As2S3), aka mineral orpiment, under compression. X-ray diffraction and Raman scattering measurements performed on orpiment samples at high pressure and combined with ab initio calculations have allowed us to determine the equation of state and the tentative assignment of the symmetry of many Raman-active modes of orpiment. From our results, we conclude that no first-order phase transition occurs up to 25 GPa at room temperature; however, compression leads to an isostructural phase transition above 20 GPa. In fact, the As coordination increases from threefold at room pressure to more than fivefold above 20 GPa. This increase in coordination can be understood as the transformation from a solid with covalent bonding to a solid with metavalent bonding at high pressure, which results in a progressive decrease of the electronic and optical bandgap, an increase of the dielectric tensor components and Born effective charges, and a considerable softening of many high-frequency optical modes with increasing pressure. Moreover, we propose that the formation of metavalent bonding at high pressures may also explain the behavior of other group-15 sesquichalcogenides under compression. In fact, our results suggest that group-15 sesquichalcogenides either show metavalent bonding at room pressure or undergo a transition from p-type covalent bonding at room pressure towards metavalent bonding at high pressure, as a precursor towards metallic bonding at very high pressure.The authors are thankful for the financial support from Spanish Ministerio de Economia y Competitividad (MINECO) through MAT2016-75586-C4-2/3-P, FIS2017-83295-P and MALTA Consolider Team project (RED2018-102612-T). Also from Generalitat Valenciana under project PROMETEO/2018/123-EFIMAT. ELDS acknowledges the European Union FP7 People: Marie-Curie Actions programme for grant agreement No. 785789-COMEX. JAS also acknowledges the Ramon y Cajal program for funding support through RYC-2015-17482. AM, SR and ELDS are thankful for interesting discussions with J. Contreras-Garcia who taught them how to analyze the ELF. Finally, the authors thank the ALBA Light Source for beam allocation at beamline MSPD (Experiment No. 2013110699) and acknowledge computing time provided by MALTACluster and Red Espan~ola de Supercomputacion (RES) through computer resources at MareNostrum with technical support provided by the Barcelona Supercomputing Center (QCM-2018-3-0032).Cuenca-Gotor, VP.; Sans-Tresserras, JÁ.; Gomis, O.; Mujica, A.; Radescu, S.; Muñoz, A.; Rodríguez-Hernández, P.... (2020). Orpiment under compression: metavalent bonding at high pressure. Physical Chemistry Chemical Physics. 22(6):3352-3369. https://doi.org/10.1039/c9cp06298jS33523369226J. D. Smith , J. C.Bailar , H. J.Emeléus and R.Nyholm , The Chemistry of Arsenic, Antimony and Bismuth , Pergamon Texts in Inorganic Chemistry , 1973 , vol. 2Pliny the Elder, Naturalis Historia , ed. J. Bostock and H. T. Riley , Taylor and Francis , London , 1855 , ch. 22E. W. Fitzhugh , Orpiment and Realgar, in Artists’ Pigments , A Handbook of Their History and Characteristics , Oxford University Press , 1997 , vol. 3, pp. 47–80Spurrell, F. C. J. (1895). Notes on Egyptian Colours. Archaeological Journal, 52(1), 222-239. doi:10.1080/00665983.1895.10852669Burgio, L., & Clark, R. J. H. (2000). Comparative pigment analysis of six modern Egyptian papyri and an authentic one of the 13th centuryBC by Raman microscopy and other techniques. Journal of Raman Spectroscopy, 31(5), 395-401. doi:10.1002/1097-4555(200005)31:53.0.co;2-eWaxman, S., & Anderson, K. C. (2001). History of the Development of Arsenic Derivatives in Cancer Therapy. The Oncologist, 6(S2), 3-10. doi:10.1634/theoncologist.6-suppl_2-3Ding, W., Tong, Y., Zhang, X., Pan, M., & Chen, S. (2016). Study of Arsenic Sulfide in Solid Tumor Cells Reveals Regulation of Nuclear Factors of Activated T-cells by PML and p53. Scientific Reports, 6(1). doi:10.1038/srep19793J. Heo and W. J.Chung , Rare-earth-doped chalcogenide glass for lasers and amplifiers , Chalcogenide Glasses: Preparation, Properties and Applications , Woodhead Publishing , 2014 , pp. 347–380D. W. Hewak , N. I.Zheludev and K. F.MacDonald , Controlling light on the nanoscale with chalcogenide thin films , Chalcogenide Glasses: Preparation, Properties and Applications , Woodhead Publishing , 2014 , pp. 471–508MORIMOTO, N. (1954). THE CRYSTAL STRUCTURE OF ORPIMENT (As2S3) REFINED. Mineralogical Journal, 1(3), 160-169. doi:10.2465/minerj1953.1.160Mullen, D. J. E., & Nowacki, W. (1972). Refinement of the crystal structures of realgar, AsS and orpiment, As2S3*. Zeitschrift für Kristallographie, 136(1-2), 48-65. doi:10.1524/zkri.1972.136.1-2.48Kampf, A. R., Downs, R. T., Housley, R. M., Jenkins, R. A., & Hyršl, J. (2011). Anorpiment, As2S3, the triclinic dimorph of orpiment. Mineralogical Magazine, 75(6), 2857-2867. doi:10.1180/minmag.2011.075.6.2857Gibbs, G. V., Wallace, A. F., Zallen, R., Downs, R. T., Ross, N. L., Cox, D. F., & Rosso, K. M. (2010). Bond Paths and van der Waals Interactions in Orpiment, As2S3. The Journal of Physical Chemistry A, 114(23), 6550-6557. doi:10.1021/jp102391aCheng, H., Zhou, Y., & Frost, R. L. (2017). Structure comparison of Orpiment and Realgar by Raman spectroscopy. Spectroscopy Letters, 50(1), 23-29. doi:10.1080/00387010.2016.1277359Porto, S. P. S., & Wood, D. L. (1962). Ruby Optical Maser as a Raman Source. Journal of the Optical Society of America, 52(3), 251. doi:10.1364/josa.52.000251Weber, A., & Porto, S. P. S. (1965). He–Ne Laser as a Light Source for High-Resolution Raman Spectroscopy. Journal of the Optical Society of America, 55(8), 1033. doi:10.1364/josa.55.001033Ward, A. T. (1968). Raman spectroscopy of sulfur, sulfur-selenium, and sulfur-arsenic mixtures. The Journal of Physical Chemistry, 72(12), 4133-4139. doi:10.1021/j100858a031Scheuermann, W., & Ritter, G. J. (1969). Raman Spectra of Cinnabar (HgS), Realgar (As4S4) and Orpiment (As2S3). Zeitschrift für Naturforschung A, 24(3), 408-411. doi:10.1515/zna-1969-0317Zallen, R., Slade, M. L., & Ward, A. T. (1971). Lattice Vibrations and Interlayer Interactions in CrystallineAs2S3andAs2Se3. Physical Review B, 3(12), 4257-4273. doi:10.1103/physrevb.3.4257Zallen, R., & Slade, M. (1974). Rigid-layer modes in chalcogenide crystals. Physical Review B, 9(4), 1627-1637. doi:10.1103/physrevb.9.1627Zallen, R. (1974). Pressure-Raman effects and vibrational scaling laws in molecular crystals:S8andAs2S3. Physical Review B, 9(10), 4485-4496. doi:10.1103/physrevb.9.4485DeFonzo, A. P., & Tauc, J. (1978). Network dynamics of 3:2 coordinated compounds. Physical Review B, 18(12), 6957-6972. doi:10.1103/physrevb.18.6957Razzetti, C., & Lottici, P. P. (1979). Polarization analysis of the Raman spectrum of As2S3 crystals. Solid State Communications, 29(4), 361-364. doi:10.1016/0038-1098(79)90572-6Besson, J. M., Cernogora, J., & Zallen, R. (1980). Effect of pressure on optical properties of crystallineAs2S3. Physical Review B, 22(8), 3866-3876. doi:10.1103/physrevb.22.3866Besson, J. M., Cernogora, J., Slade, M. L., Weinstein, B. A., & Zallen, R. (1981). Pressure effects on the absorption edge, refractive index, and Raman spectra of crystalline and amorphous As2S3. Physica B+C, 105(1-3), 319-323. doi:10.1016/0378-4363(81)90267-9Frost, R. L., Martens, W. N., & Kloprogge, J. T. (2002). Raman spectroscopic study of cinnabar (HgS), realgar (As4S4), and orpiment (As2S3) at 298 and 77K. Neues Jahrbuch für Mineralogie - Monatshefte, 2002(10), 469-480. doi:10.1127/0028-3649/2002/2002-0469Mamedov, S., & Drichko, N. (2018). Characterization of 2D As2S3 crystal by Raman spectroscopy. MRS Advances, 3(6-7), 385-390. doi:10.1557/adv.2018.201Itie, J. P., Polian, A., Grimsditch, M., & Susman, S. (1993). X-Ray Absorption Spectroscopy Investigation of Amorphous and Crystalline As2S3up to 30 GPa. Japanese Journal of Applied Physics, 32(S2), 719. doi:10.7567/jjaps.32s2.719Zallen, R. (2004). Effect of pressure on optical properties of crystalline As2S3. High Pressure Research, 24(1), 117-118. doi:10.1080/08957950410001661945Bolotina, N. B., Brazhkin, V. V., Dyuzheva, T. I., Katayama, Y., Kulikova, L. F., Lityagina, L. V., & Nikolaev, N. A. (2014). High-pressure polymorphism of As2S3 and new AsS2 modification with layered structure. JETP Letters, 98(9), 539-543. doi:10.1134/s0021364013220025Liu, K., Dai, L., Li, H., Hu, H., Yang, L., Pu, C., … Liu, P. (2019). Phase Transition and Metallization of Orpiment by Raman Spectroscopy, Electrical Conductivity and Theoretical Calculation under High Pressure. Materials, 12(5), 784. doi:10.3390/ma12050784Kravchenko, E. A., Timofeeva, N. V., & Vinogradova, G. Z. (1980). Crystal modifications of arsenic and antimony sulphides appearing at high pressure and temperature. Journal of Molecular Structure, 58, 253-262. doi:10.1016/0022-2860(80)85027-7Šiškins, M., Lee, M., Alijani, F., van Blankenstein, M. R., Davidovikj, D., van der Zant, H. S. J., & Steeneken, P. G. (2019). Highly Anisotropic Mechanical and Optical Properties of 2D Layered As2S3 Membranes. ACS Nano, 13(9), 10845-10851. doi:10.1021/acsnano.9b06161Bao, Z., & Chen, X. (2016). Flexible and Stretchable Devices. Advanced Materials, 28(22), 4177-4179. doi:10.1002/adma.201601422Koo, J. H., Kim, D. C., Shim, H. J., Kim, T.-H., & Kim, D.-H. (2018). Flexible and Stretchable Smart Display: Materials, Fabrication, Device Design, and System Integration. Advanced Functional Materials, 28(35), 1801834. doi:10.1002/adfm.201801834Garcia‐Bucio, M. A., Maynez‐Rojas, M. Á., Casanova‐González, E., Cárcamo‐Vega, J. J., Ruvalcaba‐Sil, J. L., & Mitrani, A. (2019). Raman and surface‐enhanced Raman spectroscopy for the analysis of Mexican yellow dyestuff. Journal of Raman Spectroscopy, 50(10), 1546-1554. doi:10.1002/jrs.5729Shportko, K., Kremers, S., Woda, M., Lencer, D., Robertson, J., & Wuttig, M. (2008). Resonant bonding in crystalline phase-change materials. Nature Materials, 7(8), 653-658. doi:10.1038/nmat2226Lee, S., Esfarjani, K., Luo, T., Zhou, J., Tian, Z., & Chen, G. (2014). Resonant bonding leads to low lattice thermal conductivity. Nature Communications, 5(1). doi:10.1038/ncomms4525Li, C. W., Hong, J., May, A. F., Bansal, D., Chi, S., Hong, T., … Delaire, O. (2015). Orbitally driven giant phonon anharmonicity in SnSe. Nature Physics, 11(12), 1063-1069. doi:10.1038/nphys3492Xu, M., Jakobs, S., Mazzarello, R., Cho, J.-Y., Yang, Z., Hollermann, H., … Wuttig, M. (2017). Impact of Pressure on the Resonant Bonding in Chalcogenides. The Journal of Physical Chemistry C, 121(45), 25447-25454. doi:10.1021/acs.jpcc.7b07546Wuttig, M., Deringer, V. L., Gonze, X., Bichara, C., & Raty, J.-Y. (2018). Incipient Metals: Functional Materials with a Unique Bonding Mechanism. Advanced Materials, 30(51), 1803777. doi:10.1002/adma.201803777Raty, J., Schumacher, M., Golub, P., Deringer, V. L., Gatti, C., & Wuttig, M. (2018). A Quantum‐Mechanical Map for Bonding and Properties in Solids. Advanced Materials, 31(3), 1806280. doi:10.1002/adma.201806280Svensson, C. (1974). The crystal structure of orthorhombic antimony trioxide, Sb2O3. Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, 30(2), 458-461. doi:10.1107/s0567740874002986Stergiou, A. C., & Rentzeperis, P. J. (1985). The crystal structure of arsenic selenide, As2Se3. Zeitschrift für Kristallographie, 173(3-4), 185-191. doi:10.1524/zkri.1985.173.3-4.185Pertlik, F. (1978). Verfeinerung der Kristallstruktur des Minerals Claudetit, As2O3 (?Claudetit I?). Monatshefte f�r Chemie, 109(2), 277-282. doi:10.1007/bf00906344Brown, A., & Rundqvist, S. (1965). Refinement of the crystal structure of black phosphorus. Acta Crystallographica, 19(4), 684-685. doi:10.1107/s0365110x65004140Efthimiopoulos, I., Zhang, J., Kucway, M., Park, C., Ewing, R. C., & Wang, Y. (2013). Sb2Se3 under pressure. Scientific Reports, 3(1). doi:10.1038/srep02665Efthimiopoulos, I., Kemichick, J., Zhou, X., Khare, S. V., Ikuta, D., & Wang, Y. (2014). High-Pressure Studies of Bi2S3. The Journal of Physical Chemistry A, 118(9), 1713-1720. doi:10.1021/jp4124666Ibáñez, J., Sans, J. A., Popescu, C., López-Vidrier, J., Elvira-Betanzos, J. J., Cuenca-Gotor, V. P., … Muñoz, A. (2016). Structural, Vibrational, and Electronic Study of Sb2S3 at High Pressure. The Journal of Physical Chemistry C, 120(19), 10547-10558. doi:10.1021/acs.jpcc.6b01276Cuenca-Gotor, V. P., Sans, J. A., Ibáñez, J., Popescu, C., Gomis, O., Vilaplana, R., … Bergara, A. (2016). Structural, Vibrational, and Electronic Study of α-As2Te3 under Compression. The Journal of Physical Chemistry C, 120(34), 19340-19352. doi:10.1021/acs.jpcc.6b06049Walsh, A., Payne, D. J., Egdell, R. G., & Watson, G. W. (2011). Stereochemistry of post-transition metal oxides: revision of the classical lone pair model. Chemical Society Reviews, 40(9), 4455. doi:10.1039/c1cs15098gSrivastava, P., Singh Mund, H., & Sharma, Y. (2011). Investigation of electronic properties of crystalline arsenic chalcogenides: Theory and experiment. Physica B: Condensed Matter, 406(15-16), 3083-3088. doi:10.1016/j.physb.2011.05.012Kroumova, E., Aroyo, M. I., Perez-Mato, J. M., Kirov, A., Capillas, C., Ivantchev, S., & Wondratschek, H. (2003). Bilbao Crystallographic Server : Useful Databases and Tools for Phase-Transition Studies. Phase Transitions, 76(1-2), 155-170. doi:10.1080/0141159031000076110Canepa, P., Hanson, R. M., Ugliengo, P., & Alfredsson, M. (2010). J-ICE: a newJmolinterface for handling and visualizing crystallographic and electronic properties. Journal of Applied Crystallography, 44(1), 225-229. doi:10.1107/s0021889810049411Siebert, H. (1954). Kraftkonstante und Strukturchemie. V. Struktur der Sauerstoffs�uren. Zeitschrift f�r anorganische und allgemeine Chemie, 275(4-5), 225-240. doi:10.1002/zaac.19542750407Birch, F. (1938). The Effect of Pressure Upon the Elastic Parameters of Isotropic Solids, According to Murnaghan’s Theory of Finite Strain. Journal of Applied Physics, 9(4), 279-288. doi:10.1063/1.1710417Guńka, P. A., Dranka, M., Hanfland, M., Dziubek, K. F., Katrusiak, A., & Zachara, J. (2015). Cascade of High-Pressure Transitions of Claudetite II and the First Polar Phase of Arsenic(III) Oxide. Crystal Growth & Design, 15(8), 3950-3954. doi:10.1021/acs.cgd.5b00567S. Haussühl , Physical Properties of Crystals. An Introduction , Wiley-VCH , 2007R. J. Angel , 2019 , http://www.rossangel.com/text_strain.htmS. Minomura , K.Aoki , N.Koshizuka and T.Tsushima , High-Pressure Science and Technology , Springer , 1979 , p. 435Bandyopadhyay, A. K., & Singh, D. B. (1999). Pressure induced phase transformations and band structure of different high pressure phases in tellurium. Pramana, 52(3), 303-319. doi:10.1007/bf02828893Efthimiopoulos, I., Buchan, C., & Wang, Y. (2016). Structural properties of Sb2S3 under pressure: evidence of an electronic topological transition. Scientific Reports, 6(1). doi:10.1038/srep24246Manjón, F. J., Vilaplana, R., Gomis, O., Pérez-González, E., Santamaría-Pérez, D., Marín-Borrás, V., … Muñoz-Sanjosé, V. (2013). High-pressure studies of topological insulators Bi2Se3, Bi2Te3, and Sb2Te3. physica status solidi (b), 250(4), 669-676. doi:10.1002/pssb.201200672Sans, J. A., Manjón, F. J., Pereira, A. L. J., Vilaplana, R., Gomis, O., Segura, A., … Ruleova, P. (2016). Structural, vibrational, and electrical study of compressed BiTeBr. Physical Review B, 93(2). doi:10.1103/physrevb.93.024110Pereira, A. L. J., Santamaría-Pérez, D., Ruiz-Fuertes, J., Manjón, F. J., Cuenca-Gotor, V. P., Vilaplana, R., … Sans, J. A. (2018). Experimental and Theoretical Study of Bi2O2Se Under Compression. The Journal of Physical Chemistry C, 122(16), 8853-8867. doi:10.1021/acs.jpcc.8b02194Degtyareva, O., Hernández, E. R., Serrano, J., Somayazulu, M., Mao, H., Gregoryanz, E., & Hemley, R. J. (2007). Vibrational dynamics and stability of the high-pressure chain and ring phases in S and Se. The Journal of Chemical Physics, 126(8), 084503. doi:10.1063/1.2433944Richter, W., Renucci, J. B., & Cardona, M. (1973). Hydrostatic Pressure Dependence of First-Order Raman Frequencies in Se and Te. Physica Status Solidi (b), 56(1), 223-229. doi:10.1002/pssb.2220560120Aoki, K., Shimomura, O., Minomura, S., Koshizuka, N., & Tsushima, T. (1980). Raman Scattering of Trigonal Se and Te at Very High Pressure. Journal of the Physical Society of Japan, 48(3), 906-911. doi:10.1143/jpsj.48.906Lucovsky, G. (1972). A comparison of the long wave optical phonons in trigonal Se and trigonal Te. Physica Status Solidi (b), 49(2), 633-641. doi:10.1002/pssb.2220490226Brown, I. D. (1988). What factors determine cation coordination numbers? Acta Crystallographica Section B Structural Science, 44(6), 545-553. doi:10.1107/s0108768188007712Dudev, M., Wang, J., Dudev, T., & Lim, C. (2006). Factors Governing the Metal Coordination Number in Metal Complexes from Cambridge Structural Database Analyses. The Journal of Physical Chemistry B, 110(4), 1889-1895. doi:10.1021/jp054975nBrown, I. D. (2016). Are covalent bonds really directed? American Mineralogist, 101(3), 531-539. doi:10.2138/am-2016-5299Properzi, L., Polian, A., Munsch, P., & Di Cicco, A. (2013). Investigation of the phase diagram of selenium by means of Raman spectroscopy. High Pressure Research, 33(1), 35-39. doi:10.1080/08957959.2013.769048Marini, C., Chermisi, D., Lavagnini, M., Di Castro, D., Petrillo, C., Degiorgi, L., … Postorino, P. (2012). High-pressure phases of crystalline tellurium: A combined Raman andab initiostudy. Physical Review B, 86(6). doi:10.1103/physrevb.86.064103Cheng, Y., Cojocaru‐Mirédin, O., Keutgen, J., Yu, Y., Küpers, M., Schumacher, M., … Wuttig, M. (2019). Understanding the Structure and Properties of Sesqui‐Chalcogenides (i.e., V
2
VI
3
or Pn
2
Ch
3
(Pn = Pnictogen, Ch = Chalcogen) Compounds) from a Bonding Perspective. Advanced Materials, 31(43), 1904316. doi:10.1002/adma.201904316Vilaplana, R., Gomis, O., Manjón, F. J., Segura, A., Pérez-González, E., Rodríguez-Hernández, P., … Kucek, V. (2011). High-pressure vibrational and optical study of Bi2Te3. Physical Review B, 84(10). doi:10.1103/physrevb.84.104112Fauth, F., Peral, I., Popescu, C., & Knapp, M. (2013). The new Material Science Powder Diffraction beamline at ALBA Synchrotron. Powder Diffraction, 28(S2), S360-S370. doi:10.1017/s0885715613000900Hammersley, A. P., Svensson, S. O., Hanfland, M., Fitch, A. N., & Hausermann, D. (1996). Two-dimensional detector software: From real detector to idealised image or two-theta scan. High Pressure Research, 14(4-6), 235-248. doi:10.1080/08957959608201408Toby, B. H. (2001). EXPGUI, a graphical user interface forGSAS. Journal of Applied Crystallography, 34(2), 210-213. doi:10.1107/s0021889801002242Momma, K., & Izumi, F. (2011). VESTA 3for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, 44(6), 1272-1276. doi:10.1107/s0021889811038970Dewaele, A., Loubeyre, P., & Mezouar, M. (2004). Equations of state of six metals above94GPa. Physical Review B, 70(9). doi:10.1103/physrevb.70.094112Mao, H. K., Xu, J., & Bell, P. M. (1986). Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. Journal of Geophysical Research, 91(B5), 4673. doi:10.1029/jb091ib05p04673Piermarini, G. J., Block, S., & Barnett, J. D. (1973). Hydrostatic limits in liquids and solids to 100 kbar. Journal of Applied Physics, 44(12), 5377-5382. doi:10.1063/1.1662159Klotz, S., Chervin, J.-C., Munsch, P., & Le Marchand, G. (2009). Hydrostatic limits of 11 pressure transmitting media. Journal of Physics D: Applied Physics, 42(7), 075413. doi:10.1088/0022-3727/42/7/075413Hohenberg, P., & Kohn, W. (1964). Inhomogeneous Electron Gas. Physical Review, 136(3B), B864-B871. doi:10.1103/physrev.136.b864Kresse, G., & Hafner, J. (1993). Ab initiomolecular dynamics for liquid metals. Physical Review B, 47(1), 558-561. doi:10.1103/physrevb.47.558Kresse, G., & Furthmüller, J. (1996). Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science, 6(1), 15-50. doi:10.1016/0927-0256(96)00008-0Blöchl, P. E. (1994). Projector augmented-wave method. Physical Review B, 50(24), 17953-17979. doi:10.1103/physrevb.50.17953Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized Gradient Approximation Made Simple. Physical Review Letters, 77(18), 3865-3868. doi:10.1103/physrevlett.77.3865Perdew, J. P., Ruzsinszky, A., Csonka, G. I., Vydrov, O. A., Scuseria, G. E., Constantin, L. A., … Burke, K. (2008). Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces. Physical Review Letters, 100(13). doi:10.1103/physrevlett.100.136406Monkhorst, H. J., & Pack, J. D. (1976). Special points for Brillouin-zone integrations. Physical Review B, 13(12), 5188-5192. doi:10.1103/physrevb.13.5188Grimme, S. (2006). Semiempirical GGA-type density functional constructed with a long-range dispersion correction. Journal of Computational Chemistry, 27(15), 1787-1799. doi:10.1002/jcc.20495Contreras-García, J., Pendás, Á. M., Silvi, B., & Manuel Recio, J. (2008). Useful applications of the electron localization function in high-pressure crystal chemistry. Journal of Physics and Chemistry of Solids, 69(9), 2204-2207. doi:10.1016/j.jpcs.2008.03.028Contreras-García, J., Pendás, A. M., Recio, J. M., & Silvi, B. (2008). Computation of Local and Global Properties of the Electron Localization Function Topology in Crystals. Journal of Chemical Theory and Computation
Experimental and Theoretical Study of SbPO4 under Compression
This document is the Accepted Manuscript version of a Published Work that appeared in final form in
Inorganic Chemistry, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/acs.inorgchem.9b02268.[EN] SbPO4 is a complex monoclinic layered material characterized by a strong activity of the nonbonding lone electron pair (LEP) of Sb. The strong cation LEP leads to the formation of layers piled up along the a axis and linked by weak SbO electrostatic interactions. In fact, Sb has 4-fold coordination with O similarly to what occurs with the P-O coordination, despite the large difference in ionic radii and electronegativity between both elements. Here we report a joint experimental and theoretical study of the structural and vibrational properties of SbPO4 at high pressure. We show that SbPO4 is not only one of the most compressible phosphates but also one of the most compressible compounds of the ABO(4) family. Moreover, it has a considerable anisotropic compression behavior, with the largest compression occurring along a direction close to the a axis and governed by the compression of the LEP and the weak interlayer Sb-O bonds. The strong compression along the a axis leads to a subtle modification of the monoclinic crystal structure above 3 GPa, leading from a 2D to a 3D material. Moreover, the onset of a reversible pressure-induced phase transition is observed above 9 GPa, which is completed above 20 GPa. We propose that the high-pressure phase is a triclinic distortion of the original monoclinic phase. The understanding of the compression mechanism of SbPO4 can aid to improve the ion intercalation and catalytic properties of this layered compound.The authors acknowledge financial support from the Brazilian Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq - 159754/2018-6, 307199/2018-5, 422250/20163, 201050/2012-9), FAPESP (2013/07793-6), Spanish Ministerio de Economia y Competitividad (MINECO) under projects MALTA Consolider Ingenio 2010 network (MAT2015-71070-REDC and RED2018-102612-T), MAT2016-75586-C4-1/2/3-P, PGC2018-097520-A-I00, FIS2017-83295-P, and PGC2018-094417-B-I00 from Generalitat Valenciana under project PROMETEO/2018/123, and the European Comission under project COMEX. D.S.-P., JA.S., and A.O.d.l.R. acknowledge "Ramim y Cajal" Fellowships for financial support (RyC-2014-15643, RYC-2015-17482, and RyC-2016-20301, respectively). E.L.d. S., A.M., A.B., and P.R-.H. acknowledge computing time provided by Red Espanola de SupercomputaciOn (RES) and MALTA-Cluster.Pereira, ALDJ.; Santamaria-Pérez, D.; Vilaplana Cerda, RI.; Errandonea, D.; Popescu, C.; Da Silva, EL.; Sans-Tresserras, JÁ.... (2020). Experimental and Theoretical Study of SbPO4 under Compression. Inorganic Chemistry. 59(1):287-307. https://doi.org/10.1021/acs.inorgchem.9b02268S287307591Falcão Filho, E. L., Bosco, C. A. C., Maciel, G. S., de Araújo, C. B., Acioli, L. H., Nalin, M., & Messaddeq, Y. (2003). Ultrafast nonlinearity of antimony polyphosphate glasses. Applied Physics Letters, 83(7), 1292-1294. doi:10.1063/1.1601679Nalin, M., Poulain, M., Poulain, M., Ribeiro, S. J. ., & Messaddeq, Y. (2001). Antimony oxide based glasses. Journal of Non-Crystalline Solids, 284(1-3), 110-116. doi:10.1016/s0022-3093(01)00388-xNalin, M., Messaddeq, Y., Ribeiro, S. J. L., Poulain, M., Briois, V., Brunklaus, G., … Eckert, H. (2004). Structural organization and thermal properties of the Sb2O3–SbPO4glass system. J. Mater. Chem., 14(23), 3398-3405. doi:10.1039/b406075jMontesso, M., Manzani, D., Donoso, J. P., Magon, C. J., Silva, I. D. A., Chiesa, M., … Nalin, M. (2018). Synthesis and structural characterization of a new SbPO4-GeO2 glass system. Journal of Non-Crystalline Solids, 500, 133-140. doi:10.1016/j.jnoncrysol.2018.07.005Wang, Y., li, L., & Li, G. (2012). One-step synthesis of SbPO4 hollow spheres by a self-sacrificed template method. RSC Advances, 2(33), 12999. doi:10.1039/c2ra21434bChen, S., Di, Y., Li, T., Li, F., & Cao, W. (2018). Impacts of ionic liquid capping on the morphology and photocatalytic performance of SbPO4 crystals. CrystEngComm, 20(30), 4305-4312. doi:10.1039/c8ce00790jSaadaoui, H., Boukhari, A., Flandrois, S., & Aride, J. (1994). Intercalation of Hydrazine and Amines in Antimony Phosphate. Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals, 244(1), 173-178. doi:10.1080/10587259408050100Biswal, J. B., Garje, S. S., & Revaprasadu, N. (2014). A convenient synthesis of antimony sulfide and antimony phosphate nanorods using single source dithiolatoantimony(III) dialkyldithiophosphate precursors. Polyhedron, 80, 216-222. doi:10.1016/j.poly.2014.04.017Ou, M., Ling, Y., Ma, L., Liu, Z., Luo, D., & Xu, L. (2018). Synthesis and Li-storage property of flower-like SbPO4 microspheres. Materials Letters, 224, 100-104. doi:10.1016/j.matlet.2018.04.059Jones, P. G., Sheldrick, G. M., & Schwarzmann, E. (1980). Antimony(III) arsenic(V) oxide. Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, 36(8), 1923-1925. doi:10.1107/s0567740880007492Kinberger, B., Danielsen, J., Haaland, A., Jerslev, B., Schäffer, C. E., Sunde, E., & Sørensen, N. A. (1970). The Crystal Structure of SbPO4. Acta Chemica Scandinavica, 24, 320-328. doi:10.3891/acta.chem.scand.24-0320Achary, S. N., Errandonea, D., Muñoz, A., Rodríguez-Hernández, P., Manjón, F. J., Krishna, P. S. R., … Tyagi, A. K. (2013). Experimental and theoretical investigations on the polymorphism and metastability of BiPO4. Dalton Transactions, 42(42), 14999. doi:10.1039/c3dt51823jAlonzo, G., Bertazzi, N., Galli, P., Marci, G., Massucci, M. A., Palmisano, L., … Saiano, F. (1998). In search of layered antimony(III) materials: synthesis and characterization of oxo-antimony(III) catecholate and further studies on antimony(III) phosphate. Materials Research Bulletin, 33(8), 1233-1240. doi:10.1016/s0025-5408(98)00095-6Alonzo, G., Bertazzi, N., Galli, P., Massucci, M. A., Patrono, P., & Saiano, F. (1998). On the synthesis and characterization of layered antimony(III) phosphate and its interaction with moist ammonia and amines. Materials Research Bulletin, 33(8), 1221-1231. doi:10.1016/s0025-5408(98)00094-4Brockner, W., & Hoyer, L. P. (2002). Synthesis and vibrational spectrum of antimony phosphate, SbPO4. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 58(9), 1911-1914. doi:10.1016/s1386-1425(01)00639-4Sudarsan, V., Muthe, K. ., Vyas, J. ., & Kulshreshtha, S. . (2002). PO43− tetrahedra in SbPO4 and SbOPO4: a 31P NMR and XPS study. Journal of Alloys and Compounds, 336(1-2), 119-123. doi:10.1016/s0925-8388(01)01888-6Errandonea, D., Gomis, O., Santamaría-Perez, D., García-Domene, B., Muñoz, A., Rodríguez-Hernández, P., … Popescu, C. (2015). Exploring the high-pressure behavior of the three known polymorphs of BiPO4: Discovery of a new polymorph. Journal of Applied Physics, 117(10), 105902. doi:10.1063/1.4914407Lacomba-Perales, R., Errandonea, D., Meng, Y., & Bettinelli, M. (2010). High-pressure stability and compressibility ofAPO4(A=La, Nd, Eu, Gd, Er, and Y) orthophosphates: An x-ray diffraction study using synchrotron radiation. Physical Review B, 81(6). doi:10.1103/physrevb.81.064113Errandonea, D., Gomis, O., Rodríguez-Hernández, P., Muñoz, A., Ruiz-Fuertes, J., Gupta, M., … Bettinelli, M. (2018). High-pressure structural and vibrational properties of monazite-type BiPO4, LaPO4, CePO4, and PrPO4. Journal of Physics: Condensed Matter, 30(6), 065401. doi:10.1088/1361-648x/aaa20dLópez-Solano, J., Rodríguez-Hernández, P., Muñoz, A., Gomis, O., Santamaría-Perez, D., Errandonea, D., … Raptis, C. (2010). Theoretical and experimental study of the structural stability ofTbPO4at high pressures. Physical Review B, 81(14). doi:10.1103/physrevb.81.144126Musselman, M. A., Wilkinson, T. M., Haberl, B., & Packard, C. E. (2018). In situ Raman spectroscopy of pressure‐induced phase transformations in polycrystalline Tb
PO
4
, Dy
PO
4
, and Gd
x
Dy
(1−
x
)
PO
4. Journal of the American Ceramic Society, 101(6), 2562-2570. doi:10.1111/jace.15374Muñoz, A., & Rodríguez-Hernández, P. (2018). High-Pressure Elastic, Vibrational and Structural Study of Monazite-Type GdPO4 from Ab Initio Simulations. Crystals, 8(5), 209. doi:10.3390/cryst8050209Ghosh, P. S., Ali, K., & Arya, A. (2018). A computational study of high pressure polymorphic transformations in monazite-type LaPO4. Physical Chemistry Chemical Physics, 20(11), 7621-7634. doi:10.1039/c7cp05587kGomis, O., Lavina, B., Rodríguez-Hernández, P., Muñoz, A., Errandonea, R., Errandonea, D., & Bettinelli, M. (2017). High-pressure structural, elastic, and thermodynamic properties of zircon-type HoPO4and TmPO4. Journal of Physics: Condensed Matter, 29(9), 095401. doi:10.1088/1361-648x/aa516aRuiz-Fuertes, J., Hirsch, A., Friedrich, A., Winkler, B., Bayarjargal, L., Morgenroth, W., … Milman, V. (2016). High-pressure phase of
LaPO4
studied by x-ray diffraction and second harmonic generation. Physical Review B, 94(13). doi:10.1103/physrevb.94.134109Stavrou, E., Tatsi, A., Raptis, C., Efthimiopoulos, I., Syassen, K., Muñoz, A., … Hanfland, M. (2012). Effects of pressure on the structure and lattice dynamics of TmPO4: Experiments and calculations. Physical Review B, 85(2). doi:10.1103/physrevb.85.024117Errandonea, D., & Garg, A. B. (2018). Recent progress on the characterization of the high-pressure behaviour of AVO4 orthovanadates. Progress in Materials Science, 97, 123-169. doi:10.1016/j.pmatsci.2018.04.004Bandiello, E., Errandonea, D., Pellicer-Porres, J., Garg, A. B., Rodriguez-Hernandez, P., Muñoz, A., … Popescu, C. (2018). Effect of High Pressure on the Crystal Structure and Vibrational Properties of Olivine-Type LiNiPO4. Inorganic Chemistry, 57(16), 10265-10276. doi:10.1021/acs.inorgchem.8b01495Achary, S. N., Bevara, S., & Tyagi, A. K. (2017). Recent progress on synthesis and structural aspects of rare-earth phosphates. Coordination Chemistry Reviews, 340, 266-297. doi:10.1016/j.ccr.2017.03.006Bykov, M., Bykova, E., Hanfland, M., Liermann, H.-P., Kremer, R. K., Glaum, R., … van Smaalen, S. (2016). High-Pressure Phase Transformations in TiPO4: A Route to Pentacoordinated Phosphorus. Angewandte Chemie International Edition, 55(48), 15053-15057. doi:10.1002/anie.201608530López-Moreno, S., & Errandonea, D. (2012). Ab initioprediction of pressure-induced structural phase transitions of CrVO4-type orthophosphates. Physical Review B, 86(10). doi:10.1103/physrevb.86.104112Errandonea, D., & Manjón, F. J. (2008). Pressure effects on the structural and electronic properties of ABX4 scintillating crystals. Progress in Materials Science, 53(4), 711-773. doi:10.1016/j.pmatsci.2008.02.001Merrill, L., & Bassett, W. A. (1974). Miniature diamond anvil pressure cell for single crystal x‐ray diffraction studies. Review of Scientific Instruments, 45(2), 290-294. doi:10.1063/1.1686607Fauth, F., Peral, I., Popescu, C., & Knapp, M. (2013). The new Material Science Powder Diffraction beamline at ALBA Synchrotron. Powder Diffraction, 28(S2), S360-S370. doi:10.1017/s0885715613000900Mao, H. K., Xu, J., & Bell, P. M. (1986). Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. Journal of Geophysical Research, 91(B5), 4673. doi:10.1029/jb091ib05p04673Dewaele, A., Loubeyre, P., & Mezouar, M. (2004). Equations of state of six metals above94GPa. Physical Review B, 70(9). doi:10.1103/physrevb.70.094112Prescher, C., & Prakapenka, V. B. (2015). DIOPTAS: a program for reduction of two-dimensional X-ray diffraction data and data exploration. High Pressure Research, 35(3), 223-230. doi:10.1080/08957959.2015.1059835Rodríguez-Carvajal, J. (1993). Recent advances in magnetic structure determination by neutron powder diffraction. Physica B: Condensed Matter, 192(1-2), 55-69. doi:10.1016/0921-4526(93)90108-iErrandonea, D., Muñoz, A., & Gonzalez-Platas, J. (2014). Comment on «High-pressure x-ray diffraction study of YBO3/Eu3+, GdBO3, and EuBO3: Pressure-induced amorphization in GdBO3» [J. Appl. Phys. 115, 043507 (2014)]. Journal of Applied Physics, 115(21), 216101. doi:10.1063/1.4881057Hohenberg, P., & Kohn, W. (1964). Inhomogeneous Electron Gas. Physical Review, 136(3B), B864-B871. doi:10.1103/physrev.136.b864Kresse, G., & Hafner, J. (1993). Ab initiomolecular dynamics for liquid metals. Physical Review B, 47(1), 558-561. doi:10.1103/physrevb.47.558Blöchl, P. E. (1994). Projector augmented-wave method. Physical Review B, 50(24), 17953-17979. doi:10.1103/physrevb.50.17953Perdew, J. P., Ruzsinszky, A., Csonka, G. I., Vydrov, O. A., Scuseria, G. E., Constantin, L. A., … Burke, K. (2008). Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces. Physical Review Letters, 100(13). doi:10.1103/physrevlett.100.136406Monkhorst, H. J., & Pack, J. D. (1976). Special points for Brillouin-zone integrations. Physical Review B, 13(12), 5188-5192. doi:10.1103/physrevb.13.5188Parlinski, K. Computer Code PHONON; http://wolf.ifj.edu.pl/phonon.Nielsen, O. H., & Martin, R. M. (1985). Quantum-mechanical theory of stress and force. Physical Review B, 32(6), 3780-3791. doi:10.1103/physrevb.32.3780Le Page, Y., & Saxe, P. (2002). Symmetry-general least-squares extraction of elastic data for strained materials fromab initiocalculations of stress. Physical Review B, 65(10). doi:10.1103/physrevb.65.104104Otero-de-la-Roza, A., Johnson, E. R., & Luaña, V. (2014). Critic2: A program for real-space analysis of quantum chemical interactions in solids. Computer Physics Communications, 185(3), 1007-1018. doi:10.1016/j.cpc.2013.10.026Dewhurst, K.; Sharma, S.; Nordström, L.; Cricchio, F.; Grånäs, O.; Gross, H.; Ambrosch-Draxl, C.; Persson, C.; Bultmark, F.; Brouder, C., The Elk FP-LAPW code; http://elk.sourceforge.net/ (accessed Oct 31, 2019).Manjón, F. J., Vilaplana, R., Gomis, O., Pérez-González, E., Santamaría-Pérez, D., Marín-Borrás, V., … Muñoz-Sanjosé, V. (2013). High-pressure studies of topological insulators Bi2Se3, Bi2Te3, and Sb2Te3. physica status solidi (b), 250(4), 669-676. doi:10.1002/pssb.201200672Pereira, A. L. J., Errandonea, D., Beltrán, A., Gracia, L., Gomis, O., Sans, J. A., … Popescu, C. (2013). Structural study of α-Bi2O3under pressure. Journal of Physics: Condensed Matter, 25(47), 475402. doi:10.1088/0953-8984/25/47/475402Pereira, A. L. J., Gomis, O., Sans, J. A., Pellicer-Porres, J., Manjón, F. J., Beltran, A., … Muñoz, A. (2014). Pressure effects on the vibrational properties ofα-Bi2O3: an experimental and theoretical study. Journal of Physics: Condensed Matter, 26(22), 225401. doi:10.1088/0953-8984/26/22/225401Pereira, A. L. J., Sans, J. A., Vilaplana, R., Gomis, O., Manjón, F. J., Rodríguez-Hernández, P., … Beltrán, A. (2014). Isostructural Second-Order Phase Transition of β-Bi2O3 at High Pressures: An Experimental and Theoretical Study. The Journal of Physical Chemistry C, 118(40), 23189-23201. doi:10.1021/jp507826jIbáñez, J., Sans, J. A., Popescu, C., López-Vidrier, J., Elvira-Betanzos, J. J., Cuenca-Gotor, V. P., … Muñoz, A. (2016). Structural, Vibrational, and Electronic Study of Sb2S3 at High Pressure. The Journal of Physical Chemistry C, 120(19), 10547-10558. doi:10.1021/acs.jpcc.6b01276Kroumova, E., Aroyo, M. I., Perez-Mato, J. M., Kirov, A., Capillas, C., Ivantchev, S., & Wondratschek, H. (2003). Bilbao Crystallographic Server : Useful Databases and Tools for Phase-Transition Studies. Phase Transitions, 76(1-2), 155-170. doi:10.1080/0141159031000076110Canepa, P., Hanson, R. M., Ugliengo, P., & Alfredsson, M. (2010). J-ICE: a newJmolinterface for handling and visualizing crystallographic and electronic properties. Journal of Applied Crystallography, 44(1), 225-229. doi:10.1107/s0021889810049411Sans, J. A., Manjón, F. J., Pereira, A. L. J., Vilaplana, R., Gomis, O., Segura, A., … Ruleova, P. (2016). Structural, vibrational, and electrical study of compressed BiTeBr. Physical Review B, 93(2). doi:10.1103/physrevb.93.024110Pereira, A. L. J., Santamaría-Pérez, D., Ruiz-Fuertes, J., Manjón, F. J., Cuenca-Gotor, V. P., Vilaplana, R., … Sans, J. A. (2018). Experimental and Theoretical Study of Bi2O2Se Under Compression. The Journal of Physical Chemistry C, 122(16), 8853-8867. doi:10.1021/acs.jpcc.8b02194Bai, Y., Srikanth, N., Chua, C. K., & Zhou, K. (2017). Density Functional Theory Study of Mn+1AXn Phases: A Review. Critical Reviews in Solid State and Materials Sciences, 44(1), 56-107. doi:10.1080/10408436.2017.1370577An ab initio study on compressibility of Al-containing MAX-phase carbides. (2013). Journal of Applied Physics, 114(17), 173709. doi:10.1063/1.4829282Bai, Y., Qi, X., He, X., Sun, D., Kong, F., Zheng, Y., … Duff, A. I. (2018). Phase stability and weak metallic bonding within ternary‐layered borides CrAlB, Cr
2
AlB
2
, Cr
3
AlB
4
, and Cr
4
AlB
6. Journal of the American Ceramic Society, 102(6), 3715-3727. doi:10.1111/jace.16206Birch, F. (1978). Finite strain isotherm and velocities for single-crystal and polycrystalline NaCl at high pressures and 300°K. Journal of Geophysical Research, 83(B3), 1257. doi:10.1029/jb083ib03p01257Pereira, A. L. J., Gomis, O., Sans, J. A., Contreras-García, J., Manjón, F. J., Rodríguez-Hernández, P., … Beltrán, A. (2016). β−Bi2O3under compression: Optical and elastic properties and electron density topology analysis. Physical Review B, 93(22). doi:10.1103/physrevb.93.224111Cuenca-Gotor, V. P., Sans, J. A., Ibáñez, J., Popescu, C., Gomis, O., Vilaplana, R., … Bergara, A. (2016). Structural, Vibrational, and Electronic Study of α-As2Te3 under Compression. The Journal of Physical Chemistry C, 120(34), 19340-19352. doi:10.1021/acs.jpcc.6b06049Korabel’nikov, D. V., & Zhuravlev, Y. N. (2018). Structural, elastic, electronic and vibrational properties of a series of sulfates from first principles calculations. Journal of Physics and Chemistry of Solids, 119, 114-121. doi:10.1016/j.jpcs.2018.03.037Santamaría-Pérez, D., Gracia, L., Garbarino, G., Beltrán, A., Chuliá-Jordán, R., Gomis, O., … Segura, A. (2011). High-pressure study of the behavior of mineral barite by x-ray diffraction. Physical Review B, 84(5). doi:10.1103/physrevb.84.054102Santamaria-Perez, D., Chulia-Jordan, R., Daisenberger, D., Rodriguez-Hernandez, P., & Muñoz, A. (2019). Dense Post-Barite-type Polymorph of PbSO4 Anglesite at High Pressures. Inorganic Chemistry, 58(4), 2708-2716. doi:10.1021/acs.inorgchem.8b03254Hinrichsen, B., Dinnebier, R. E., Liu, H., & Jansen, M. (2008). The high pressure crystal structures of tin sulphate: a case study for maximal information recovery from 2D powder diffraction data. Zeitschrift für Kristallographie - Crystalline Materials, 223(3), 195-203. doi:10.1524/zkri.2008.0017Knight, K. S. (2010). Analytical expressions to determine the isothermal compressibility tensor and the isobaric thermal expansion tensor for monoclinic crystals: application to determine the direction of maximum compressibility in jadeite. Physics and Chemistry of Minerals, 37(8), 529-533. doi:10.1007/s00269-009-0353-8Angel, R. J. Win_Strain; http://www.rossangel.com/text_strain.htm.Errandonea, D., Muñoz, A., Rodríguez-Hernández, P., Gomis, O., Achary, S. N., Popescu, C., … Tyagi, A. K. (2016). High-Pressure Crystal Structure, Lattice Vibrations, and Band Structure of BiSbO4. Inorganic Chemistry, 55(10), 4958-4969. doi:10.1021/acs.inorgchem.6b00503Bodenstein, D., Brehm, A., Jones, P. G., Schwarzmann, E., & Sheldrick, G. M. (1982). Darstellung und Kristallstruktur von Arsen(III)phosplior(V)oxid, AsPO4 / Preparation and Crystal Structure of Arsenic(III) Phosphorus(V) Oxide, AsPO4. Zeitschrift für Naturforschung B, 37(2), 136-137. doi:10.1515/znb-1982-0203Ruiz-Fuertes, J., Friedrich, A., Gomis, O., Errandonea, D., Morgenroth, W., Sans, J. A., & Santamaría-Pérez, D. (2015). High-pressure structural phase transition inMnWO4. Physical Review B, 91(10). doi:10.1103/physrevb.91.104109Garg, A. B., Errandonea, D., Rodríguez-Hernández, P., & Muñoz, A. (2016). ScVO4under non-hydrostatic compression: a new metastable polymorph. Journal of Physics: Condensed Matter, 29(5), 055401. doi:10.1088/1361-648x/29/5/055401Momma, K., & Izumi, F. (2011). VESTA 3for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, 44(6), 1272-1276. doi:10.1107/s0021889811038970Hoppe, R. (1970). The Coordination Number– an«Inorganic Chameleon». Angewandte Chemie International Edition in English, 9(1), 25-34. doi:10.1002/anie.197000251Hoppe, R. (1979). Effective coordination numbers (ECoN) and mean fictive ionic radii (MEFIR). Zeitschrift für Kristallographie - Crystalline Materials, 150(1-4), 23-52. doi:10.1524/zkri.1979.150.14.23Baur, W. H. (1974). The geometry of polyhedral distortions. Predictive relationships for the phosphate group. Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, 30(5), 1195-1215. doi:10.1107/s0567740874004560Guńka, P. A., & Zachara, J. (2019). Towards a quantitative bond valence description of coordination spheres – the concepts of valence entropy and valence diversity coordination numbers. Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials, 75(1), 86-96. doi:10.1107/s2052520618017833Ruiz-Fuertes, J., Segura, A., Rodríguez, F., Errandonea, D., & Sanz-Ortiz, M. N. (2012). An
Electronic properties of doped silicon nanocrystals
No presente trabalho estuda-se, através de modelação computacional baseada na teoria
do funcional da densidade, os efeitos de impurezas em nanocristais de silício passivados com
hidrogénio. São calculados os níveis de energia das impurezas intersticiais mais propícias
à dopagem de tipo-n e p para os sistemas con nados, nomeadamente os três primeiros
elementos pertencentes ao grupo dos alcalinos, Li, Na e K, e os três primeiros halogéneos,
F, Cl e Br. Observou-se que à temperatura ambiente estas impurezas não contribuem com
portadores de carga (electrões ou lacunas) para os estados HOMO nem LUMO. Este facto
resulta do con namento da superfície e do meio dieléctrico fraco existente no nanocristal.
Os níveis de energia para o P, B e o Duplo Dador Térmico do modelo da cadeia O5 foram
também calculados por forma a comparar o comportamento destes nos sistemas con nados
com o comportamento, bem estabelecido, na matéria extensa. Níveis de energia profundos
no hiato também foram observados para estas impurezas
Solid State Chemistry: Computational Chemical Analysis for Materials Science
International audienc