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Summary

Computer simulations of solids have become increasingly powerful and predictive, par-

ticularly, those based on first-principles approaches such as density functional theory (DFT).

Lattice dynamics has also become an important theme related to materials science and is essen-

tial for understanding the thermal properties of crystalline solids at finite temperatures. This

thesis focuses on understanding the nature of collective atomic vibrations (phonons) in solids

and their role in structural phase transitions. First-principles lattice dynamics approaches

- within the harmonic and quasi-harmonic approximations - are applied to describe phase

transformations in the metal halide perovskite CsSnI3 and the nature of the cubic to rhombo-

hedral ferroelectric distortion in the semiconductor GeTe. The aim is therefore to demonstrate

the advantages and shortcomings of quasi-harmonic approximations and to benchmark this

method on these two challenging systems. Further approaches were applied to GeTe in order

to evaluate the effect of the different levels of physical complexity regarding the nature of the

transition, e.g. quasi-particle self-consistent GW (QSGW ). In addition to the role of temper-

ature, we also probe the effect of an external bias on phase stability taking the case of AB and

AA bilayer graphene under an applied voltage.
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Chapter 1

Introduction

Nothing is permanent in this wicked world, not even our troubles

Charles Chaplin

Make-Measure-Model-Manipulate (M4) is a Research Council funded Programme, aimed

to develop new types of switchable materials based on the generation and control of metastable

states in molecular systems. It is based on an interdisciplinary collaboration between experi-

mental and theoretical groups, where expertise in synthesis, characterisation, modelling, and

device fabrication are brought together. My work within this project was to provide compu-

tational modelling support to the experimental work through the characterisation and under-

standing of excited- and transition-state features at the atomistic level, and therefore providing

fundamental understanding to direct the optimisation of the metastable states for potential

technological applications.

Density Functional Theory (DFT) is a well-established computational tool to study the struc-

tural and electronic properties on systems in thermodynamic equilibrium; however, interesting

phenomena tend to occur for systems perturbed by external stimuli such as temperature,

pressure, light, external bias (i.e. phase transitions). Therefore one should resort to other

methodologies in order to probe the properties of phase-changing materials, and hence study

the structural stability of the different phases, which can be metastable or transition-states.

Lattice dynamics is becoming increasingly important to study the structural stability of

systems and results derived from such calculations explain many of the thermodynamic prop-

erties of solids by relating anomalous phonon behaviour to structural changes in solids. More-

over, lattice-dynamics calculations within the quasi-harmonic approximation (QHA) has been

established as an inexpensive and powerful means to model the temperature dependence of

properties on the density functional theory (DFT) free-energy surface.

For a given pressure p and temperature T the equilibrium state of the system presents

1



different microscopic properties (density, chemical composition, magnetisation) which are the

characteristic of each phase of matter. When a change of phase occurs (phase transition),

mostly due to application of an external perturbation, the microscopic properties change and

these are related to the order of the transition.

According to Ehrenfest’s classification scheme the order of a transition may be classified

through the Gibbs thermodynamic potential [13]. When the first derivative of the potential is

discontinuous across the phase boundary we have a first order phase transition. This implies

that the volume V and the entropy S are also discontinuous1. Since the entropies between the

phases are different, the system must absorb or release heat during the transition.

Continuous phase transitions involve a continuous change in entropy and volume, although

show discontinuities in the second derivatives of the Gibbs potential, and therefore are also

known as second order phase transitions. These phase transitions show discontinuities of the

response functions (susceptibilities), such as the specific heat Cp, the isothermal compressibility

κT and the volume expansivity βP
2 [13].

CsSnI3 is an interesting inorganic halide-perovskite system, with ABX3 stoichiometry, ex-

hibiting a number of phase changes, with two high-temperature phases and two ground-state

phases [14, 15]. In order to bring new insight to the dynamical stability of these polymorphs,

the effect of temperature is modelled by using lattice dynamics calculations, within the QHA.

In particular focus was given to the temperature dependence of structural properties and the

thermodynamic stability of the four phases. The contributions of the structural distortions

from the high-symmetry cubic structure to the ground-state orthorhombic phase were also

analysed by employing symmetry-mode analysis techniques [16].

Other appealing materials, lacking inversion symmetry, which have started to gain inter-

est amongst the scientific community are the Ferroelectric Rashba Semi-Conductors (FERSC)

[17, 18]. These materials combine directed polarisation (ferroelectricity) and spin-orbit cou-

pling (SOC) effects. The resulting relativistic electronic structure can display a Rashba ef-

fect (momentum-dependent splitting of spin bands), with spin texture being controllable and

switchable via an electric-bias. The best-known FERSC due to its structural simplicity, is the

prototypical GeTe [17], exhibiting a high-temperature phase, which is an ideal rocksalt struc-

ture, and a ground-state ferroelectric rhombohedral phase. Not only the QHA was employed

to study the dynamical stability of the two phases of GeTe, but also many-body perturbation

theory has been applied (relativistic calculations using self-consistent methods, QSGW ), in

order to reproduce the Rashba electronic band structure of the ferroelectric phase. To analyse

the macroscopic mechanism of the ferroelectric transition, and to model the material properties

1
(
∂G
∂T

)
p

= −S,
(
∂G
∂p

)
T

= V

2−T
(
∂2G
∂T2

)
p

= Cp, − 1
V

(
∂2G
∂p2

)
T

= κT ,
1
V

(
∂2G
∂T∂p

)
= βP
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through the phase transition, one also needs to apply phenomenological Landau theories. By

employing this model, in conjunction with the DFT free-energy calculations, it was possible

to calculate the evolution of the polarisation, from the centrosymmetric to the ferroelectric

phase, and assess the hysteresis behaviour for this specific spin-orbit coupled system.

The last and also interesting project, is related to the bilayer graphene (BLG) system, which

can coexist with different stacking environments: the Bernal (or AB) and the AA structure.

The interest in BLG is mainly due to the possibility of inducing a semiconductor with a

tunable band gap [19]. However, the most reliable structure for external tuning is observed

for the Bernal-stacked BLG and this tuning has been evidenced through the application of an

electric field normal to the layers. For this project the electronic structure of the two stacking

environments of the bilayer system have been studied, in order to probe the widths of the

band-gaps as a function of different voltage bias strengths, and also the respective scaling

behaviour of the band dispersion. Spin-orbit coupling has been considered for the electronic

properties and energy dispersions were compared against the bias intensities of the two systems.

Moreover, lattice dynamics have been also considered to study the structural stabilities of the

biased and unbiased AB and AA stacking BLG systems.

This thesis is structured into six main chapters. Following this first chapter, we present

a second chapter that details the theoretical framework of the methods employed in the

present work, describing density-functional theory, many-body perturbation theory and lattice-

dynamics (the (quasi-)harmonic approximation). Moreover, in this chapter a theoretical

overview regarding the required physical observables to analyse a ferroelectric system is also

provided. Chapter three, four and five refer to the obtained results and respective discussions,

mainly on: 3) the CsSnI3 system that has been taken as a more complex case study for appli-

cation of the QHA; 4) methodology applied to study the paraelectric-to-ferroelctric structural

phase transition of GeTe; 5) effects of an applied external electric field on the electronic and

phonon properties of the AB and AA systems of BLG. The sixth chapter provides the conclu-

sions and a perspectives for future work, which can be followed as a continuation of the present

work within the PhD project.
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Chapter 2

Theoretical Framework

Art is the lie that enables us to see the truth

Pablo Picasso

2.1 The Many-Body Problem

In order to solve the many-body Schrödinger equation for a quantum system of N inter-

acting fermions, several approximations can be employed, which are simplifications of the full

problem of many electrons moving in an external potential field [20].

The many-body Schrödinger equation involves a set of Ne electrons and Nn atomic nuclei,

of the form

ĤΨ(R, r) = EΨ(R, r), (2.1)

where the wavefunction of the system depends on the 3Nn coordinates of the nuclei, R, and

the 3Ne coordinates of the electrons. This interacting system is usually described by the

Hamiltonian, Ĥ, containing the kinetic and potential terms: 1

Ĥ = −1

2

Ne∑

i

∇2
i −

Nn∑

α

1

2Mα
∇2
α +

1

2

Ne∑

i,j=1
i 6=j

1

|ri − rj |
−
Ne,Nn∑

i,α=1

Zα
|ri −Rα|

+
1

2

Nn∑

α,β=1
α6=β

ZαZβ
|Rα −Rβ|

, (2.2)

where Mα, Zα and Rα represent the mass, charge and location of the α-th nucleus, and ri

the coordinate of the i-th electron. The total wavefunction is thus a function of Nn plus Ne

coordinates (disregarding spin degrees of freedom), respectively [21], i.e.:

Ψ ≡ Ψ(r1, . . . , rNe ; R1, . . . ,RNn). (2.3)

1Quantities are expressed in atomic units, where the h̄, the electron charge e, the electron mass m and the
permittivity of vacuum 4πε0, are taken to be unity.
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One of the first simplifications to solve the many-body problem was the Born-Oppenheimer

approximation (1927) [22]. The first assumption of this approach considered that the Schrödinger

equation describing the electronic system could be solved by the field of fixed nuclei, due to

the mass of the nuclei being 2000 times bigger than the mass of the electrons [23]. The kinetic

energy of the nuclei can therefore be neglected, since respective term is much smaller than the

kinetic term of the electrons (second term of Eq. 2.2). Moreover, the repulsion term between

nuclei can be considered a constant (last term of Eq. 2.2), and will only contribute with a

constant shift to the eigenvalues.

Within this assumption, the wavefunction can thus be approximated by considering a fixed

nuclear configuration of the form:

Ψ(r,R) = ψNe(r,R)φNn(R) (2.4)

where ψNe and φNn are separate electronic and nuclear wavefunctions, respectively (the elec-

tronic wavefunction depends on the nuclear positions, R, parametrically). The electronic

wavefunction is therefore solved for a given set of nuclear coordinates, written as

HNeψNe(r,R) =




−1

2

Ne∑

i

∇2
i +

1

2

Ne∑

i,j=1
i 6=j

1

|ri − rj |
−
Ne,Nn∑

i,α=1

Zα
|ri −Rα|




ψNe(r,R)

= ENe(R)ψNe(r,R). (2.5)

The Coulomb interactions between electrons and nucleus are still considered, with the

nuclei R varying at infinitesimally small positions in space (adiabatic approximation), and

thus obtaining the electronic energy as a function of R (potential energy surface). For small

displacements around a minimum, the potential energy surface can be approximated by a

parabola thus leading to the Harmonic Approximation (Sec. 2.4.1) [23, 24].

The second assumption of the Born-Oppenheimer approximation is considering the nuclear

kinetic term to compute the Schröodinger equation for the nuclear motions, with the nuclei

moving in a averaged potential set up by the electronic coordinates. The electronic energy

obtained by Eq. 2.5, will thus contribute with a potential term to the motion of the nuclei

HNnφNn(R) =




−1

2

Nn∑

α

1

2Mα
∇2
α +

Nn∑

α,β=1
α6=β

ZαZβ
|Rα −Rβ|




ψNn(R) + ENe(R)

= EtotφNn(R). (2.6)

where the nuclear wavefunction will account for the vibrational, translational, and rota-

tional properties of the system (Sec. 2.4) [23].
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The Born-Oppenheimer approximation fails when one cannot disregard the strong interac-

tion between electrons and nuclei, as is the case for systems where electron-phonon coupling

is significant, i.e. superconductors [21].

Hartree (1928) [25] attempted to replace the Coulomb interaction by an effective electron-

electron potential, Uee(r), in which each electron moves in a field produced by a sum over all

the other electrons. This term was suggested to have the following form:

Uee(r) =

∫
dr′

n(r′)
|r− r′| , (2.7)

with n being the density of electrons at one point in space r

n(r) =
∑

j

|ψj(r)|2. (2.8)

In this simple approximation, the electronic correlation is not accounted for, and therefore

the many-body Schrödinger equation is decoupled into Ne one-electron equations. This results

in the Hartree equation [26]

−1

2
∇2ψl + [Un(r) + Uee(r)]ψl = εlψl (2.9)

where Un is the potential defined by the nuclear-electron interaction.

Due to the nature of the one-electron Hartree equation, Eq. 2.9, the Pauli exclusion prin-

ciple is not recognized: whenever two electrons with identical spin states occupy the same

position, the true many-body wavefunction has to vanish. Later on, Fock and Slater (1930)

suggested that due to the fermionic character of the electrons a space of antisymmetric wave-

functions would be required. The many-electron wavefunction would thus have the form of an

antisymmetrised product of one-electron wavefunctions [20, 26].

The simplest possible type of antisymmetric wavefunction can be obtained by taking a

collection of orthonormal one-particle wavefunctions

∫
ψ∗i (r)ψj(r)dr = δij (2.10)

and antisymmetrizing them, in the form of a Slater determinant:

Ψ(r1σ1 · · · rNσN ) =
1√
N !

∑

s

(−1)sψs1(r1σ1) · · ·ψsN (rNσN ) (2.11)

=
1√
N !

∣∣∣∣∣∣∣∣

ψ1(r1σ1) ψ1(r2σ2) · · · ψ1(rNσN )
...

...
. . .

...

ψn(r1σ1) ψn(r2σ2) · · · ψn(rNσN )

∣∣∣∣∣∣∣∣
(2.12)
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where the sum is over all permutations s (the sign is +1 or −1 depending on whether the

permutation can be written as a product of an even or odd number of pair interchanges).

Because this wavefunction is not a simple product, but a determinant, the Pauli principle

induces correlations among particles, and therefore the spin index σi (taking values ±1) is

included in every wavefunction. The wavefunction can be written in the form

ψl(riσi) = ψl(ri)χl(σi) (2.13)

with χl(σi) being the spin-function, satisfying [27]

∑
χ∗l (σi)χk(σi) = δlk. (2.14)

The expectation value of the energy, is

E =
∑

l

〈ψl|hl +
1

2
(Jl −Kl)|ψl〉, (2.15)

where ĥ =
∑

l hl is the one-electron integral of the form

hl =
1

2
∇2
l −

∑

n

Zn
rl −Rn

, (2.16)

Ĵ =
∑

l Jl is the Coulomb operator (electron-electron repulsion term) and K̂ =
∑

lKl is the

exchange operator (spin-correlation effects), with

Jl(r) =
∑

k

∫ ∫
ψl(r)ψ∗l (r)

1

|r− r′|ψk(r
′)ψ∗k(r

′) dr dr′ (2.17)

Kl(r) =
∑

k

∫ ∫
ψl(r)ψ∗k(r)

1

|r− r′|ψk(r
′)ψ∗l (r

′) dr dr′. (2.18)

By minimizing 2.15 as a function of the spin-orbitals, ψl, composing the many-electron

ground-state, this gives the Hartree-Fock equations:

F̂ψl = εlψl, (2.19)

where F̂ is known as the Fock operator (the effective one-electron operator), defined as F̂ =

ĥ+ Ĵ − K̂.

Equation 2.19 is a Schrödinger-like equation, with εl being a Lagrange multiplier that has

to be chosen such that it ensures orbital orthonormalization. These can be identified as the

one-electron orbital energies.
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Configuration interaction (CI) wavefunctions can provide very reliable results for potential

energy surfaces, electronic excited states, etc. However, such wavefunctions are also difficult to

evaluate due to their extreme computational cost, since these represent the exact solution of the

electronic Schrödinger equation for a fixed one-particle basis set. For very large configuration

spaces, the number of CI coupling coefficients becomes prohibitively large to store on disk;

these coefficients must be evaluated as needed in a so-called direct CI procedure [20].

In the CI approach the many-body wavefunction is written as a linear combination of Slater

determinants ψ of the form:

|ΨCI〉 =
∑

i

cj |ψ〉. (2.20)

By inserting the expansion into the Schrödinger equation

Ĥ
∑

i

cj |ψ〉 = E
∑

i

cj |ψ〉 (2.21)

and multiplying with the determinants one obtains:

∑

i

Hijcj = E
∑

i

Sijcj |ψ〉 (2.22)

where Hij = 〈ψi|Ĥ|ψj〉 and Sij = 〈ψi|ψj〉 = δij .

The full CI method is impossible to compute, and the best determinants which lead to the

closest ground-state energy have hence to be chosen. This can be achieved from the Hartree-

Fock method, by approximating the wavefunction by a single Slater determinant [20].

2.2 Density Functional Theory

2.2.1 The Kohn-Sham Equations

Density Functional Theory (DFT) is based on the work performed on electronic-structure

methods by Hohenberg, Kohn and Sham in 1965 [28, 29], and is presently one of the most

successful approaches to compute the ground-state properties of a system described by quantum

mechanics.

Within this approach, the electron orbitals are obtained as solutions of a set of Schrödinger-

like equations, referred to as the Kohn-Sham equations, in which potential terms depend solely

on the electron density, n(r), instead of a many-body function of 3N electronic degrees of

freedom [30].

The ground state density is thus obtained through the solution of the Kohn-Sham equations,
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which have the form of the single-particle Schrödinger equation:

[
− ∇

2

2
+ vKS[n(r)]

]
ϕi(r) = εiϕi(r), (2.23)

where vKS is the Kohn-Sham potential, a functional of the non-interacting electron density, n,

which is itself defined in terms of the Kohn-Sham wave-functions and constructed by summing

over occupied orbitals:

n(r) =

occ∑

i

|ϕi(r)|2. (2.24)

The Kohn-Sham potential can be defined as the sum of three terms: the external potential,

vext, which is the Coulomb attraction between the bare nuclei and the electrons; the Hartree

term, vHartree, which represents the electrostatic energy of the electron in the field generated

by the total electron density; and the exchange-correlation (xc) potential, vxc [1]:

vKS[n(r)] = vext(r) + vHartree[n(r)] + vxc[n(r)]. (2.25)

The last term of Eq. 2.25, the xc potential, takes the form of a functional derivative over the

density, such that:

vxc[n(r)] =
δExc[n(r)]

δn(r)
. (2.26)

The electron exchange term describes the exchange symmetry when two particles are

exchanged. For any particle characterized by Fermi-Dirac statistics with half-integer spin

(fermions), which includes electrons, this effect obeys the Pauli exclusion principle, preventing

two parallel-spin particles from being found at the same point in space (i.e. orbital). The

exchange term lowers the energy by keeping electrons of the same spin away from each other,

thus reducing the Coulomb repulsion [31]. Correlation energy, on the other hand, result from

the collective behaviour of electrons to screen and decrease the Coulombic interaction; correla-

tions become more pronounced for opposite spins since they are more likely to occupy nearby

locations [31, 32].

The exchange-correlation functional is constructed by employing approximations, with

many different forms and developed for a wide variety of physical systems and applications.

2.2.2 Expansion of the Kohn-Sham Wave-functions

The Kohn-Sham wave-functions may be expanded using different numerical basis sets. The

most natural method to treat periodic systems is an expansion in plane-waves, which takes
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advantage of the periodicity of the crystal. The Kohn-Sham equations can then be solved in

momentum space.

Application of Bloch’s theorem ensures that the Kohn-Sham wave-functions takes the form

of a travelling plane-wave modulated by a specific function in order to incorporate the trans-

lational periodicity of the system [33], such that:

ϕk,n(r) = eık·r
∑

G

ck,n(G)eıG·r, (2.27)

where k is the crystal wave-vector restricted to the first Brillouin zone 2, n is the band index,

and G are the reciprocal lattice vectors, related to the primitive vectors of reciprocal space,

bi,j,k, of the form G = m1b1 +m2b2 +m3b3, with

bi = 2π
aj × ak

|ai · (aj × ak)|
. (2.28)

where ai,j,k are the unit-cell vectors and the volume is formed by V = |ai · (aj × ak)|.
The electronic density is

n(r) =
∑

k,n

∑

G,G′
fk,nc

∗
k,n(G′)ck,n(G)eı(G−G

′)·r (2.29)

where fk,n are the band occupation numbers. Fourier transformation gives:

n(G) =
∑

k,n

∑

G′
fk,nc

∗
k,n(G′ −G)ck,n(G′). (2.30)

The sums over k must, in principle, be performed over all Brillouin-zone wave-vectors, but

this can be reduced to sums over points in the irreducible Brillouin zone by taking advantage

of the space group symmetry of the lattice.

Two technical convergence parameters need to be adjusted for periodic calculations. One

of these is the Brillouin zone (BZ) sampling to replace the integration of the periodic functions

over reciprocal space. To evaluate these integrals computationally, a weighted sum over a

subset of k-points is performed; by taking advantage of the space group symmetry of the

lattice, these sums are reduced to the irreducible Brillouin zone [1], thus generating a finite set

of representative reducible k-vectors. The second convergence parameter is the cut-off radius

set to truncate the sums over the reciprocal lattice vectors. The complete set of reciprocal

lattice vectors G is infinite, and since the orbitals and densities tend to evidence smooth

variations at small scales, the plane-wave components become negligible for large G-vectors.

2The wave-vector k is related to the momentum p of the propagating wave as k = h̄/p, where h̄ is the Planck
constant.
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Therefore it is possible to set the G-vectors to a certain cut-off radius, defined in terms of

corresponding kinetic energy: Ecutoff = G2
max/2, where Gmax is the radius of the sphere that

contains all plane-waves up to the cut-off defined within a volume Vsphere = (4π/3)G3
max.

When employing plane-wave basis sets the number of basis states will change discontin-

uously with cut-off energy. These discontinuities occur at different cut-offs when defining a

different k-point sampling mesh. At a fixed cut-off energy, a change in the size or shape of

the unit-cell will also cause discontinuities in the plane-wave basis set. This problem can be

reduced by using a denser k-point set, so that the weight attached to the applied plane-wave

basis state is reduced. However, the problem can still persist for dense k-point samplings and

therefore a correction factor can be applied. The correction factor accounts for the difference

between the number of states defined in a basis set with an infinitely large number of k-points

and the number of basis states actually used in a particular calculation [34].

The plane-wave basis sets are complete and orthonormal, without any linear dependency

and it is unbiased with respect to the atom positions. It is a simple method to evaluate forces,

stresses and force-constants.

For finite systems such as molecules, clusters, surfaces, and other low-dimensional systems,

it is also possible to use plane-wave basis sets by placing one finite system in a large enough

cell to ensure sufficient space between non-interacting neighbouring images, to avoid spurious

interactions between these. This increases the computational cost, since the electron density

is concentrated in a small fraction of the total volume of the supercell, a very large number of

plane-waves are required. Moreover, for charged systems and/or defect supercell, care needs to

be taken to avoid artefacts from of long-range interactions between charged clusters and their

periodic images. When the real-space lattice vectors are not large enough, spurious effects

from defect- or charge-image coupling can be observed. Different methods exist to correct for

the interactions induced by periodic boundary conditions in such structures [?, 35, 36].

Other, more efficient, basis sets to expand the Kohn-Sham orbitals exist to model finite

systems, which impose the condition that the wave-functions go to zero at a distance far enough

from the nuclei. One such type of basis, mostly implemented in quantum-chemistry codes, is

the use of localised orbitals such as Gaussian basis sets. The accuracy is determined by the

number of functions used and the suitability of the choice of these functions for the specific

system. The disadvantage of employing Gaussian basis sets is related to non-orthogonality of

the basis therefore giving rise to orbital overlap (Basis Set Superposition Error) and the linear

dependency. Real space basis sets can also be employed, where basis functions are sampled on

a uniform real-space mesh. In real space convergence of the results has to be checked against

the grid size and spacing [1].
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The potential diverges close to the nuclei, and the valence electrons feel a strong rapidly-

oscillating spherically symmetric Coulomb potential in this region. However, in the interstitial

region (far from the nuclei) the potential is weak and the symmetry of the crystal dominates

[20].

In order to match the Bloch states of the rapid oscillations near the nuclei, a huge number of

plane-waves would be required. Although plane-waves allow for efficient numerical implemen-

tations, the number of required plane-waves would be very high compared to other basis-sets.

Therefore, plane-waves can only be used in practice after treating the rapid oscillations near the

nuclei, using alternative techniques. These include the pseudopotential method and augmented

methods.

Pseudopotentials

The Coulomb potential (external potential term of Eq. 2.25) can be treated in the form

of an effective potential consisting of the inner core electrons and nucleus. These form an

inert core region which interacts with the valence electrons [1], i.e. those which are mostly

responsible for the chemical bonding between atoms.

The concept of a pseudopotential was first introduced by Fermi in 1934 [37], when he tried

to describe the scattering of a free neutron by a nucleus. In 1935, Hellman [38] suggested a

potential form for potassium, replacing the complicated effects of the core electrons with an

effective potential (pseudopotential).

It was only in the late 50’s that the concept of pseudopotential began to be extensively

applied for metals and semiconductors, when Phillips and Kleinman [39] generalised an ap-

proximation to Hellmann’s original pseudopotential form.

Based on this effective-potential idea, the Schrödinger equation now contains a modified

effective-potential term instead of an explicit Coulombic potential for core electrons. The

wave-function can thus be written as a sum of a smooth function (pseudo wave-function) plus

an oscillating function, to maintain orthogonality between the valence and core electrons [1]:

|ψv〉 = |ϕv〉+
∑

c

αcv|ψc〉, (2.31)

where αcv = −〈ψc|ϕv〉, |ψv〉 and |ψc〉 are the exact solutions of the Schrödinger equation for

the valence and the core electrons, respectively, and |ϕv〉 is the pseudo wave-function.

The Schrödinger equation for the smooth orbital, |ϕv〉, is thus written as

Ĥ|ϕv〉 = Ev|ϕv〉+
∑

c

(Ec − Ev)|ψc〉〈ψc|ϕv〉. (2.32)
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Figure 2-1: Hamann pseudopotential for Al, with r0 = 1.24, r1 = 1.54, and r2 = 1.40 bohr.
Comparison is made between the pseudo wave-functions and true wave-functions (left) and
pseudopotentials with the Coulomb potential (right) (from Ref. [1]).

Currently, there are three main types of pseudopotentials for plane-wave electronic structure

codes in widespread use: norm-conserving, ultrasoft and projector augmented-wave (PAW)

pseudopotentials.

Norm-conserving pseudopotentials, first introduced by Hamann, Sclüter and Chiang [40],

are constructed using an ab-initio procedure and require that the pseudo and all-electron

valence eigenstates have the same energies, amplitudes, and charge densities outside the cut-

off radius, rl (Fig. 2-1). The integrated charge inside the cut-off radius for each wave-function

must agree (norm-conservation), so that the total charge in the core region is correct and the

normalized pseudo-orbital equals the true orbital beyond rl [24], therefore requiring that the

pseudo wave-function has the same norm as the true valence wave-function [1]. The norm-

conserving condition is written mathematically as:

RPS
l (r) = RAE

nl (r), if r > rl∫ rl

0
|RPS

l (r)|2 r2 dr =

∫ rl

0
|RAE

nl (r)|2 r2 dr, if r < rl (2.33)

where Rl(r) is the radial part of the wave-function with angular momentum l, and the super-

script PS and AE define the pseudo and all-electron wave-function, respectively.

The cut-off radius can influence the accuracy and the ability of the calculations to reproduce

realistic electronic structures in different environments (transferability), this being a measure

of the quality of the pseudopotential. The minimum value for the cut-off radius is determined

by the location of the outermost nodal surface of the true wave-function. If rl is close to this

minimum, the pseudopotential can reproduce the electronic structure more accurately (a hard

pseudopotential). If, on the other hand, a very large cut-off radius is chosen, the pseudopo-
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tential will be smooth and almost angular-momentum independent (a softer pseudopotential),

and may not be transferable between widely different systems. A soft potential leads to a fast

convergence of the cut-off in plane-wave calculations, and so the choice of the cut-off radius is

a balance between basis-set size and pseudopotential accuracy.

Ultrasoft pseudopotentials, where norm-conservation is not enforced, are constructed to

describe a particular atomic environment [1], and are therefore often inherently less transfer-

able, but computationally more efficient. The best known approach to constructing ultrasoft

pseudopotentials was introduced by Vanderbilt [41] and is quite widely employed, in particular

for 3d transition metals where a large plane-wave basis-set is frequently necessary to treat

strongly-localized orbitals.

Blöchl [42] further developed the ultrasoft pseudopotential concept by generalizing the pseu-

dopotential and linear augmented plane-wave (LAPW) methods into the projector augmented-

wave (PAW) method [42, 43]. This method introduces a linear transformation from the pseudo

wave-function to the all-electron wave-function (Kohn-Sham single particle wave-function), op-

erating directly on the full valence and core wave-functions. Similarly to the LAPW method,

PAW can be used to treat first-row and transition-metal elements with affordable basis-sets

while providing access to the full all-electron wave-function, and thus to a higher accuracy

for a given level of optimization. The PAW potentials are generally more accurate than the

ultrasoft pseudopotentials, not only because the radial cut-offs are smaller than those defined

for the ultrasoft pseudopotentials, but also because the PAW potentials reconstruct the exact

valence wave-function with all nodes in the core region [43].

The concept of augmented-wave methods is to divide the wave-function into two parts,

namely, a partial-wave expansion within an atom-centred sphere and envelope functions out-

side the spheres. The envelope function is expanded into plane-waves or other types of basis

functions (i.e. Hankel functions). Envelope function and partial-wave expansions (and respec-

tive derivatives) are then matched at the sphere boundary radius [42].

In practice the PAW formalism transforms the true wave-functions, ψ(r), onto numeri-

cally convenient pseudo (PS) wave-functions, ϕ(r), in order to generate smooth wave-functions

with rapidly convergent plane-wave expansion. The transformation is done by considering a

transformation operator T which maps the pseudo- onto the all-electron (AE) wave-functions:

|ψ(r)〉 = T |ϕ(r)〉 (2.34)

The PS wave-functions will be identified with the envelope functions of the linear methods

or the wave-functions of the pseudopotential approach, whereas the AE wave-function is a full

one-electron Kohn-Sham wave-function [2].
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The total energy will thus be expressed through the PS wave-functions as

E[ψ(r)] = E[T ϕ(r)] (2.35)

The transformation operator T has to modify the smooth PS wave-function in each atomic

region, so that the resulting wave-function has the correct nodal structure. Therefore, the

operator will be written as the identity with the sum of atomic contributions SR:

T = 1 +
∑

R

SR (2.36)

where R is the atomic site. For every atom, SR will add the difference between the all-electron

and the PS wave-function. Each local contribution, SR, acts only within some augmentation

region enclosing the atom, implying that the all-electron and PS wave-functions will coincide

outside the augmentation regions. The equivalent of the augmentation region in the linear

methods is the muffin-tin or the atomic sphere (more details in the following subsection). In

the pseudopotential method the augmentation region will correspond to the core region [42].

By applying a linear transformation of the form:

|ψ〉 = |ϕ〉+
∑

i

(|φi〉 − |φ̃i〉)〈p̃i|ϕ〉 (2.37)

the AE wave-function can thus be obtained from the PS wave-function, for each atomic site

R represented by the index i. The local terms SR are defined for each augmentation region

by specifying a target function |φ〉 (AE partial-waves) of the transformation for a set of ini-

tial functions |φ̃〉 (PS partial-waves) which are orthogonal to the core states and satisfy the

completeness relations in the augmentation region, such that

|φi〉 = (1 + SR)|φ̃i〉 (2.38)

The AE partial-waves are solutions to the radial Schrödinger equation. The functions 〈p̃| are

the projector functions, which probe the character of the wave-function and, for exactly each PS

partial-wave these must satisfy the orthogonality and completeness condition
∑

i |φ̃i〉〈p̃i| = 1

within the augmentation sphere, so that the one-centre expansion is identical to the PS wave-

function

∑

i

|φ̃i〉〈p̃i|ϕ〉 ≡ |ϕ〉, 〈p̃i|φ̃j〉 = δij (2.39)

The partial-waves are functions on a radial grid, multiplied with spherical harmonics. The
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Figure 2-2: Projector functions of the Cl atom for two s-type partial-waves (top), p-type
(middle) and d-type (bottom) (from Ref. [2]).

PS wave-functions can be expanded into plane-waves, but other choices are also possible [2].

Augmented Plane-Wave Methods

Augmented-wave methods, originally introduced by Slater (1937) [44], partition space into

two different regions: non-overlapping spheres around each nuclei, where the potential is a

spherically-symmetric muffin-tin potential; and an interstitial region between atoms, where

the potential is smooth and constant [45, 46].

APW methods have the advantage of correctly treating both highly localised atomic-like

states (core states), using atomic-like spherical functions, and delocalised valence states, by em-

ploying delocalised plane-waves. The disadvantage of the method is the difficulty of matching

the functions and solving the resulting non-linear equations [46].

Outside the muffin-tin (MT) spheres, the basis functions are simply defined by plane-waves,

eik·r, whereas inside the spheres, the basis functions are linear combinations of solutions to the

radial Schrödinger equation [24, 20], written as:

∞∑

l=0

l∑

m=−l
AlmRl(r)Ylm(θ, φ) (2.40)
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with Rl(r) being the solutions to the radial Schrödinger equation3, the Ylm(θ, φ) are the spher-

ical harmonics [47], and the coefficients Alm are found by matching the solution inside the

muffin-tin spheres to the plane-wave outside the spheres.

The APW basis functions are formed by basis containing solutions of the radial Schrödinger

equation inside each MT sphere and a Bloch wave in the interstitial region, for which the

boundary condition needs to match the plane-wave in value. It is possible to match the

amplitude of the wave-function across the MT sphere boundary by expanding the plane-wave

in spherical harmonics [20]

exp (ik · r) = 4π

lmax∑

l=0

l∑

m=−l
iljl(kr)Y

∗
lm(k̃)Ylm(r̃) (2.41)

where jl(kr) are the spherical Bessel functions of order l; k̃ and r̃ are the abbreviated notation

to refer to the polar angles of vectors k and r, respectively. The expansions in l and m are

defined up to a finite cut-off value lmax.

The required matching condition implies that the coefficients of Ylm(r̃) must be equal for

both parts of the basis functions, Eqs. 2.40 and 2.41, since Ylm(r̃) form an orthogonal set over

the spherical coordinates, therefore fixing the coefficients Alm. We hence obtain the APW

basis-function inside the sphere [20]:

ψAPW
k (r) = 4π

lmax∑

l=0

l∑

m=−l
il
[
jl(kr)

Rl(R)

]
Rl(r)Y ∗lm(k̃)Ylm(r̃) (2.42)

where R is the radius of the sphere.

Within the APW method, the wave-function is approximated in the interstitial region by

plane-waves, whereas in the core region the rapid oscillations are incorporated by the direct

integration of the Schrödinger equation. The basis functions are continuous at the sphere

boundaries, but the expansion functions have discontinuous first derivatives at the surface of

the sphere, r = R [33]. The APW functions are not exact solutions of the Schrödinger equation,

but they are appropriate basis functions for expanding the wave-function as:

ψk(r) =
∑

G

CGψ
APW
k+G(r) (2.43)

where the sum runs over all the reciprocal lattice vectors, G.

The APW wave-functions are all evaluated at the same energy value, and the coefficients

3− 1
2r2

d
dr

[
r2 dRl(r)

dr

]
+
[
l(l+1)

2r2
+ V (r)

]
Rl(r) = ERl(r)
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CG are given by the lowest energy solution of the generalised eigenvalue equation [46] 4.

The APW wave-functions are expanded in energy-dependent basis, where the matrix ele-

ments of the Hamiltonian will depend on the energy. Due to this non-linear energy dependency,

straightforward application of the matrix methods for the generalised eigenvalue problem is

complicated [20].

Linearised methods, introduced by O. K. Andersen in 1975 [48], recover the augmented

methods into more useful forms [46]. In the Linear Augmented Plane-Wave (LAPW) method

an energy-independent Hamiltonian is employed. A range of energies around a reference value

of energy of interest (pivot energy, Ep) [20] are chosen accordingly, for which both the solution

of the radial Schrödinger equation and its energy derivative are taken into account when

constructing the basis-sets inside the muffin-tins. The radial basis functions can hence be

expanded up to first order, and have the form:

Rl(r, E) = Rl(r, Ep) + (E − Ep)
∂

∂E
Rl(r, Ep) (2.44)

The energy derivatives of the radial solution are employed together with the radial solutions

within the muffin-tin spheres to have a continuous match to the plane-waves outside the spheres,

whereas within the APW method the first-derivative is discontinuous at the boundary [33,

46]. The APW Hamiltonian depends on the energy only via the radial solutions, Rl(r), and

therefore by taking the energy derivatives at a fixed energy into account, the energy dependence

from the Hamiltonian disappears [20]. The expansion of the wave-function thus has the form:

ψk+G(r) =

lmax∑

l=0

l∑

m=−l

[
AlmRl(r, Ep) +Blm

∂

∂E
Rl(r, Ep)

]
Ylm(θ, φ) (2.45)

where the coefficients Alm and Blm are fixed by the matching condition. The wave-functions

are energy-independent and smooth across the sphere boundary. We thus obtain a generalised

eigenvalue problem with energy-independent Hamiltonian matrix [20].

The linear method can be extended through the use of local orbitals (LO), a technique

termed LAPW+LO, where a third radial function is added to the basis. This inclusion extends

the energy range over the eigenvalues to be calculated [45]. The addition of the LO helps treat

atoms for which the semicore states extend beyond the sphere radius.

The LAPW+LO basis, inside the sphere, is therefore written as:

ψLOk =

lmax∑

l=0

l∑

m=−l

[
AlmRl(r, E1) +Blm

∂

∂E
Rl(r, E1) + ClmRl(r, E2)

]
Ylm(θ, φ) (2.46)

4HC = ESC, with S being the overlap matrix, with elements given by Spq = 〈χp|χq〉. When the basis
consists of non-orthonormal basis functions, it is necessary to reformulate the eigenvalue problem HC = EC,
and include the overlap matrix S.
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Figure 2-3: Schematic illustration of LAPW basis functions, which consist of a plane-wave,
in the interstitial region, augmented by linear combinations of atomic-like functions in the
muffin-tin spheres. These are chosen in such as way that the resulting function is continuous
across the sphere boundaries (from Ref. [3]).

where the three coefficents are determined by the requirement that the LO should have zero

value and energy derivative at the sphere boundary. The reference energy parameters, E1 and

E2 are chosen based on the valence and semicore position, respectively [49].

Muffin-Tin Orbitals

Muffin-Tin Orbitals (MTO) form a basis of localised augmented orbitals, with the electronic

states being described by a small number of functions forming the minimal basis [46]. The

localised basis functions are continuous in value and derivative at the sphere boundary. Inside

the sphere the orbital is energy-dependent and combines with the wave-function outside the

sphere.

O. K. Anderson [50] developed a new set of functions by separating the dependency of κ,

the decay constant that characterises the envelope function5, on r. Inside the sphere the basis

function is:

ψMTO
k (r, E, κ) = il [φl(E, r) + κ cot (ηl(E))jl(κr)]Ylm(θ, φ) (2.47)

5In the LAPW and PAW methods, plane-waves are used for envelope functions due to their ability to converge
to the basis.
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where jl and ηl are spherical Bessel and Neumann functions, respectively [46]. For nega-

tive energies, the Neumann functions are replaced by Hankel functions with asymptotic form

i−le−|κ|r/|κ|r, as r → 0 [46, 51].

Outside the sphere the basis has the form:

ψMTO
k (r, E, κ) = ilκηl(κr)Ylm(θ, φ) (2.48)

Eqs. 2.47 and 2.48 lead to an envelope function (outside the sphere) with the property that

each MTO basis-function is well defined both inside the sphere, because jl(κr) is regular at

the origin, and outside the sphere, as ηl(κr) is regular at ∞. Within this approach the states

will be normalised for all negative energies for any κ.

The linear-MTO method is based on the MTO properties of energy, E, and the decay

constant of the envelope function, κ. For a fixed value of κ, a LMTO basis-function inside the

sphere is defined as a linear combination of φ(E, r) and φ̇(E, r) calculated around a reference

energy Ep. The form of the LMTO basis-function inside the sphere is defined by

ψLMTO(r, E, κ) = il [φl(E, r) + κ cot (ηl(E))Jl(κr)]Ylm(θ, φ) (2.49)

and outside the sphere it has the form:

ψLMTO(r, E, κ) = ilκNl(κr)Ylm(θ, φ). (2.50)

Jl and Nl are similar to the Bessel and Neumann functions, but are fixed by the requirement

that the energy derivative of the wave-function vanishes at E = Ep. Thus, one obtains an

energy-independent LMTO basis-function with E = Ep, similar to the basis of the LAPW

method.

The LMTO method is well suited to dense solids, but less efficient for open structures such

as molecular crystals where atom-centred basis functions are not always adequate for describ-

ing the wave-function in large interstitial regions. Very satisfactory results can be obtained

for closed packed structures using LMTO basis sets when local orbitals are included to treat

the semicore states. LMTO can be more efficient than LAPW, mostly when treating localised

states, i.e.: d-states in transition-metals, since LMTOs are localised real-space envelope func-

tions [52]. On the other hand, the LMTO method may be less robust because there is no

natural way to converge the basis to completeness.

Plus Muffin-Tin Orbitals

In 2008, Kotani and van Schilfegaarde [52] further developed a method which integrates

atom-centred and plane-wave envelope functions in order to increase the flexibility of the basis.
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The combination of smooth Hankel functions and APWs is known as the Plus Muffin-Tin

(PMT) basis-set. Since MTOs efficiently describe low-energy and localised states, the mixed

basis is more efficient than the LAPW method for a given tolerance [52].

The envelope functions of the PMT basis are smoothed versions of Hankel functions, nor-

mally adopted for LMTO basis, which consist of a convolution of a Gaussian function with a

Hankel function. The smoothness of the function is controlled by an extra degree of freedom,

which is the gaussian width or smoothing radius [45]. Unlike the ordinary Hankel functions,

which diverge at the origin, PMTs resemble Gaussian functions for small r, and are smooth

everywhere. For large r the functions behave like ordinary Hankel functions, and are thus

better approximations to the wave-function than Gaussian orbitals [45, 52].

2.2.3 The Exchange-Correlation Potential

The exchange-correlation potential is a functional derivative of the exchange-correlation

energy (Eq. 2.26) with respect to the density. To ensure that the Kohn-Sham formulation

remains exact, the xc energy is defined as:

Exc[n(r)] = T [n(r)]− TS[n(r)] + Eee[n(r)]− EHartree[n(r)] (2.51)

where T [n(r)] and Eee[n(r)] are the exact kinetic and electron-electron interaction energies,

respectively, and TS[n(r)] is the Kohn-Sham kinetic energy:

TS[n(r)] =
∑

i=1

∫
ψ∗i (r)

(
− 1

2
∇2
)
ψi(r) dr (2.52)

and EHartree is the classical Hartree energy of the electrons given by:

EHartree[n(r)] =
1

2

∫ ∫
n(r)n(r′)
|r− r′| drdr′. (2.53)

The two terms that are not known exactly, the kinetic and electron-electron interaction

terms, are grouped into a universal functional, which reproduces the all-electron kinetic and

interaction energies and is independent of the external potential, of the form:

FHK[n(r)] = T [n(r)] + Eee[n(r)] (2.54)

where the subscript HK refers to the Hohenberg-Kohn theory, from which the functional is

derived. Thus, Exc can be written in terms of Hohenberg-Kohn functional as:

Exc[n(r)] = FHK[n(r)]− (TS[n(r)] + EHartree[n(r)]). (2.55)
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The simplest approximation to the exchange-correlation potential is the Local-Density Ap-

proximation (LDA). Here, the potential depends solely on the value of the density at the point

r, and has the form [1]:

ELDA
xc [n] =

∫
εHEG

xc [n(r)] d3r (2.56)

vLDA
xc =

d

dn
εHEG

xc [n(r)], (2.57)

where εHEG
xc (n) is the xc energy per unit volume of the homogeneous electron gas (HEG)

at density n. The spin-polarised version, the Local Spin-Density Approximation (LSDA), is

written as

ELSDA
xc [n↑, n↓] =

∫
εxc[n↑(r), n↓(r)] d3r, (2.58)

with εxc(n↑(r), n↓(r)) being the exchange-correlation energy per unit volume for an electron

gas of uniform spin densities n↑ and n↓.

The exchange energy of the HEG can be analytically calculated from the expression [31]:

ELDA
x [n] = −3

4

( 3

π

)1/3
∫

n(r)4/3 dr. (2.59)

The correlation energy of the HEG is obtained by parametrizing the results for several

densities originally obtained using Monte Carlo methods by Ceperley and Alder [53]. Currently,

there exist several parametrized forms for this functional, e.g. PZ81 [54], PW92 [55].

The generalized-gradient approximation (GGA) is a simple extension of the LSDA (Eq.

2.58), and can be seen as an improvement in accuracy, since it attempts to incorporate into ε

the effects of inhomogeneities by including the gradient of the electron density ∇n (making it

a semi-local method)

EGGA
xc [n↑, n↓] =

∫
f(n↑, n↓,∇n↑,∇n↓) d3r. (2.60)

Some results obtained within the L(S)DA approximation are found to be in very good agree-

ment with experimental data, including in some cases molecular properties such as equilibrium

structures, harmonic stretch frequencies, and charge moments [32]. Although successful for

some systems, however, this approach can also fail, for example, by incorrectly predicting neg-

ative ions to be unstable, underestimating the fundamental energy gaps of semiconductors and

insulators, and overestimating the length of hydrogen bonds. Similar to the LDA, GGA also
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fails to describe energy band-gaps, which are a crucial physical quantity if one intends to study,

e.g. the impurity levels in doped semiconductors. Another common deficiency of (semi-)local

approximations is their incorrect description of long-range correlation, in particular van-der-

Waals (vdW) interactions. Also, strongly localized d− and f−states are incorrectly described

as being delocalised, thus resulting in metallic states instead of being insulating as observed in

experiment [56]. Despite these failures, the GGA functional can provide reasonably accurate

forces, charge-densities and energy barriers.

The earliest semi-local (GGA) functionals had a tendency to overestimate the equilibrium

volume, and therefore a revised semi-local functional was constructed for solids - the Perdew-

Burke-Ernzerhof parametrization revised for solids (PBEsol) - which has been successful in

improving the description of equilibrium properties of densely-packed solids and their surfaces

[57, 58], albeit at the expense of less accurate cohesive energies [59].

Most of the problems mentioned above, which result from using the (semi-)local functionals,

arise mostly because the correct asymptotic behaviour of the density is not obeyed [60, 61]. In

regions that are spatially far away from the system, the density (and its derivatives) decays

exponentially to zero [60].

The band-gap, Egap, can be obtained as the difference between the the electron affinity, A,

and the ionization potential, I [60, 5], such that:

A = EN − EN+1 ≡ −εLUCO

I = EN−1 − EN ≡ −εHOCO

Egap = I −A = εLUCO − εHOCO (2.61)

where the HOCO and LUCO are the highest occupied and lowest unoccupied crystalline or-

bitals, respectively.

In DFT, the fundamental gap is not obtained solely as the difference between the Kohn-

Sham LUCO, εKS
LUCO, and HOCO, εKS

HOCO, eigenvalues, but instead has the form [60]:

Egap = εKS
LUCO − εKS

HOCO + ∆xc (2.62)

where ∆xc is the derivative discontinuity with respect to the number of electrons in the system,

N . When a fraction of an electron is added to the system, the Kohn-Sham potential shifts

uniformly by a factor of ∆xc. LDA and many GGA functionals do not provide this extra term,

since the derivative discontinuity is zero. This problem is responsible for the underestimation

of the Kohn-Sham gap when compared to experimental band-gaps [60].

Since ∆xc measures the non-analytical behaviour of the xc energy functional, it can be seen
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as being a finite variation of vxc(r), due to an infinitesimal variation of n(r) [5], i.e.:

∆xc =

(
∂Exc[n]

∂n(r)

∣∣∣∣
N+1

− ∂Exc[n]

∂n(r)

∣∣∣∣
N

)
+O

(
1

N

)
. (2.63)

New approaches to xc functionals have been implemented to try and correct for the asymp-

totic behaviour, although many modern functionals still do not solve this problem [60]. Im-

proved exchange-correlation functionals have been formulated since the more traditional (semi-

)local functionals, and have been grouped into five rungs in a sequence of chemical accuracy,

known as the Jacob’s ladder of density functional approximations (Fig. 2-4) [30]. As the ladder

is ascended, the functionals incorporate higher levels of theory with increasingly complex pa-

rameters. These stretch out from the Hartree world (neglecting exchange as well as correlation

[25]) up to the heaven of chemical accuracy, such that [4, 30]:

1. The LDA, which constitutes the lowest and most basic rung, using only n↑(r) and n↓(r)

as its main parameter.

2. The generalized gradient approximation adds the gradients of the density, ∇n↑(r) and

∇n↓(r)

3. The meta-GGA approximation which adds the Laplacian of the density ∇2n↑(r) and

∇2n↓(r) and the kinetic energy density, τ↑, and τ↓, making them fully nonlocal func-

tionals of the density. It should be noted, however that the Tao, Perdew, Staroverov,

and Scuseria (TPSS) functional does not incorporate the Laplacian of the density, thus

avoiding singularities of these Laplacians at the nucleus [62].

4. The hyper-GGA incorporate the exact-exchange energy density, and are fully nonlocal

functionals of the occupied Kohn-Sham orbitals (more commonly called hybrid function-

als).

5. The exact-exchange can be combined with exact-partial correlation by using both occu-

pied and unoccupied Kohn-Sham orbitals. An example is the random-phase approxima-

tion (RPA), which accounts for, dynamical screening effects, and short- and long-range

dispersive forces, without the need to resort to empirical corrections [63, 64].

2.3 Many-Body Perturbation Theory

Many-body perturbation theory (MBPT) is a method which accounts for electron corre-

lation by treating it as a small perturbation to the Hamiltonian of the system. Many-body

perturbation can therefore treat the many-body correlations as if these were composed by
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Figure 2-4: Jacob’s ladder of density functional approximations to the exchange-correlation
energy (from Ref. [4]).

weakly interacting particles, i.e. quasiparticles and collective excitations. In order to calculate

the properties of these particles one can resort to quantum field theoretical quantities such as

the Green’s functions, also known as propagators [65].

The conceptual tool of GW is the one-particle Green’s function. Knowledge of the Green’s

function of a system provides the most important physical information such as the ground-state

energy and other thermodynamic functions, the energy and lifetime of excited states, and the

linear response to external perturbations [66].

The GW approximation (GWA) is an alternative to DFT for calculating the electronic

properties of materials from first-principles, and can improve on the band-gaps of insulators

and semiconductors, hence correcting the systematic DFT underestimation. The name derives

from the mathematical form of the self-energy which takes the product the Green’s function G

and the dynamically screened interaction W , Σ = iGW (Fig. 2-6) [6]. In GW , the self-energy

is given by the Hartree term and Fock term, which is supplemented by the screened Coulomb

interaction, W , instead of the bare Coulomb interaction, V 6 (standard Hartree term of Fig.

2-6, single wiggly line). W is calculated within the random phase approximation (RPA), in

which the screening is given by the interaction with independent electron-hole pairs [6]. Fig.

2-7 shows the Feynman diagram of the screening interaction: the interaction between two

electrons is mediated via a virtual electron-hole pair (Green’s function bubble) which causes

a dynamical charge redistribution - electrons only perceive each other through a screened in-

6V (r1, r2) = e2|r1 − r2|−1
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Figure 2-5: Kohn-Sham band-structure of a semiconductor (left). After adding an electron,
which occupies the empty conduction band (right), the xc potential and the band-structure
shift by an amount of ∆xc (from Ref. [5]).

teraction [6]. The electron correlations included in GW can be understood by analysing the

diagrams in Fig. 2-8, where by incorporating the screened interaction and the RPA expansion

we obtain electronic correlations that go beyond the Hartree-Fock approximation. These in-

clude quasiparticle renormalizations, finite quasiparticle lifetimes, band-gap renormalizations

[6]. Since the electronic correlations are restricted to only the second line (Fig. 2-8), GW is

only valid for weakly-correlated systems, mainly for semiconductors; GW is not suitable for

describing Hubbard side bands, Mott-Hubbard metal-insulator transitions, transition metals

oxides, or f -electron systems [6].

Figure 2-6: The self-energy, Σ, is given by the Hartree term and a Fock-like term, represented
by the screened Coulomb interaction W (double wiggly line), instead of the bare Coulomb
interaction, V (single wiggled line). The interacting Green’s function, G, is represented by a
double straight line (from Ref. [6]).

2.3.1 From Hedin’s Equations to GW

The GW method is an approximation to the self-energy which attempts to account for

the complicated correlation effects in a many-body system. The simplest approximation re-
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Figure 2-7: The screened Coulomb interaction W (double wiggly line) is calculated from the
bare Coulomb interaction, V (single wiggled line) and corrections which describe the screening
processes. The screening is calculated from the RPA. Only the bubble diagrams in a geometric
series are considered (second line). The geometric series is generated from a single bubble
connected to the screeened interaction (first line). Starting with W = V (RHS of the first
line), one generates the second term of the second line, and by further iterations one may
obtain the whole series (from Ref. [6]).

Figure 2-8: By replacing the screened interaction (Fig. 2-7) into the self-energy (Fig. 2-6),
the Hartree and Fock terms are generated (first line), together with the electronic correlations
that go beyond the Hartree-Fock term (second line) (from Ref. [6]).

sults from the expansion of Hedin’s equations [67], which stem from five coupled equations:

the Schwinger-Dyson equation, the screened interaction, the polarisation vector, the standard

relations between irreducible and reducible vertex, and the self-energy [67, 6].

The formal way to represent the one-particle Green’s function is by defining

G(12) = −i〈T (Ψ(1)Ψ†(2))〉 (2.64)

where the script 1 and 2 represent the space-time coordinates, i.e. 1 = (r1, t1). T is the Dyson

time-ordering operator and Ψ is the field operator in the Heisenberg representation [67]. The

averaging is done with respect to the exact ground state, rather than the noninteracting ground

state of the system.

27



For a one-body Hamiltonian, H0 has the form [52]

H0 = −∇
2

2m
+ V eff(r1, r2) (2.65)

where V eff is the effective potential. The potential is static and Hermitian and can be non-

local, although if V eff is generated by the Kohn-Sham relations it becomes local, such that

V eff(r1, r2) = V eff(r1)δ(r1 − r2)

The noninteracting Green’s function, G0, is then constructed from the eigenvalues, εs, and

eigenfunctions, Ψs(r), determined by H0. From the definition of Eq. 2.64, G0 is thus 7:

G0(r1, r2, ω) =
∑

s

Ψs(r1)Ψ∗s(r2)

ω − εs
(2.66)

where

Ψs(r1) = 〈N, 0|Ψ(r1)|N + 1, s〉
εs = EN+1,s − EN,0 − iδ when εs ≥ µ (2.67)

Ψs(r1) = 〈N − 1, s|Ψ(r1)|N, 0〉
εs = EN,0 − EN−1,s + iδ when εs < µ (2.68)

where µ = EN+1,0 − EN,0 is the chemical potential (or the electron affinity, −A), |N, 0〉 is

the ground-state determined by H0 and the sum runs over all states of the N + 1 and N − 1

systems [67].

The self-energy is related to the Green’s function through:

G(12) = G0(12) +

∫
d[34] G0(13)Σ(34)G(42) (2.69)

with G and G0 representing the interacting and non-interacting (V = 0) Green’s functions,

respectively. Eq. 2.69 describes the propagation of a particle from (r2, t2) to (r1, t1).

Based on Hedin’s equation, the screened interaction, W , can be related to the polarisation

operator, Π. In addition to the bare interaction, more complicated interactions involving

additional electrons are also accounted for [6]. W is given by:

W (12) =

∫
[d3] ε−1(13)V (32) (2.70)

7Fourier transformation allows one to change to a frequency-domain Green’s function G(r1, r2, ω) =
∫
d(t1−

t2) G(r1t1, r2t2) exp [iω(t1 − t2)]
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where ε is the dielectric function, which is the term related to Π as

ε(13) = δ(13)−
∫
d[4] V (14)Π(43) (2.71)

with δ(13) coming from the definition of the inverse Green’s function as [67]

δ(13) =

∫
d[4] G(14)G−1(43)

W (12) gives the potential at point 1 due to the presence of a test charge at point 2, and

includes the effect of the electron polarisation. Therefore W would represent the dynamically

screened interaction between electrons in a general medium [67] and, can be re-written as:

W (12) = V (12) +

∫
[d34] V (13)Π(34)W (42) (2.72)

The most basic approximation, is to remove the second term of the RHS of Eq. 2.72, and

merely consider the bare Coulomb potential to obtain the self-energy: Σ(12) = iG(12)V (12)

(Hartree-Fock approximation).

The polarisation operator, Π, is the standard relation between two particle Green’s func-

tions (response functions), and forms another of Hedin’s equations:

Π(12) = −i
∫
d[34] G(13)G(41)Γ(342) (2.73)

with Γ being the vertex function, described by:

Γ(123) = δ(12)δ(13) +

∫
d[4567]

δΣ(12)

δG(45)
G(46)G(57)Γ(673) (2.74)

in which the self-energy, Σ, is written as a functional derivative of the Green’s function.

We finally arrive at the last of Hedin’s equation, which defines the self-energy Σ:

Σ(12) = i

∫
d[34]G(13)W (14)Γ(423) (2.75)

The simplest approximation is to neglect the vertex corrections of Eq. 2.74 [68], by removing

the last term of the RHS. This results in rewriting Π as

Π(12) = −iG(12)G(21) (2.76)

which is simply the RPA. Σ also changes to:

Σ(12) = −iG(12)W (12) (2.77)
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thus obtaining the GWA.

Since GW is an approximation to the exact theory, the one-body effective Hamiltonian,

H(ω), determines the time evolution of the one-body amplitude for the many-body system

and is written as:

H(r1, r2, ω) = −∇
2

2m
+ V ext(r1, r2) + V H(r1, r2) + Σ(r1, r2, ω) (2.78)

with H(r1, r2, ω) being a functional of V eff and V ext the external potential from the nuclei.

The Hartree potential, V H is obtained from the electron density as [68, 7]:

V H(r1, r2) =

∫
dr2 V (r1, r2)n(r2) (2.79)

with n being the electron density.

By summing up the potential terms we obtain the ω-dependent one-body effective potential:

V GW(r1, r2, ω) = V ext(r1, r2) + V H(r1, r2) + Σ(r1, r2, ω) (2.80)

Thus, one obtains a perturbative correction to the one-particle potential, V eff(r1) [69]:

∆V (r1, r2, ω) = V GW(r1, r2, ω)− V eff(r1) (2.81)

In the one-shot GW, H0 is typically generated by LDA-DFT, and hence V eff(r1) is the

Kohn-Sham Hamiltonian. Considering only the diagonal terms, the quasiparticle (QP) energy

is: [69]

Ekn = εkn + Zkn[〈Ψkn|Σ(r1, r2, εkn)|Ψkn〉]− [〈Ψkn|V LDA
xc (r1)|Ψkn〉] (2.82)

with k being the wave-vector and n the band index. Zkn is the QP renormalization factor,

and for simplicity this value is taken to be unity [69].

2.3.2 Quasiparticle Self-Consistent GW

Quasiparticle self-consistent GW (QSGW) is an ab-initio method that determines the non-

interacting Hamiltonian in a self-consistent manner and does not depend on LDA-DFT.

In QSGW it is more complicated to calculate the QP energies, since the off-diagonal terms

of Eq. 2.82 are required [69]. Based on Landau’s QP picture, there are fundamental one-

particle like excitations around the Fermi energy, EF, which are characterised by dressed QPs.
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The QP energies, Es, and eigenfunctions, Φs(r1), are of the form

[−∇2

2m
+ V ext + V H + Re[Σ(Es)]− Es

]
|Φs〉 = 0 (2.83)

where only the real part of the self-energy is considered [69]. Within the one-particle picture

described by H0, the QP energies, εs, and eigenfunctions, Ψs, are bare QPs. The bare QPs

interact with each other via the bare Coulomb interaction and evolve into the dressed QPs

when the interaction Ĥ − Ĥ0 is turned on adiabatically. Ĥ is the total Hamiltonian, written

as a sum of three terms:

Ĥ = Ĥk + V̂ ee + V̂ ext (2.84)

with

Ĥk =
∑

σ

∫
dr1 ψ̂

†
σ(r1)

(
−∇

2

2m

)
ψ̂σ(r1), (2.85)

V̂ ee =
1

2

∑

σσ′

∫
dr1dr2 υ(r1, r2)ψ̂†σ(r1)ψ̂†σ′(r2)ψ̂σ′(r2)ψ̂σ(r1), (2.86)

V̂ ext =
∑

σ

∫
dr1 V̂

ext
σ (r1)n̂σ(r1) (2.87)

where ψ̂σ′(r1) are the field operators, σ the spin index and V̂ ext
σ (r1) is the external potential.

Similar to the GWA, the dressed QPs consist of the central bare QP and an induced

polarisation cloud of other bare QPs.

In order to determine the optimal H0, the effective potential, V eff, has to be chosen based

on a self-consistent perturbation theory, where the time evolution determined by H0 is as

close as possible to that of H(ω) [7]. By introducing a norm M to measure the difference

∆V (ω) = H(ω)−H0, the optimum V eff will thus be a potential which minimises M . An exact

minimization of the norm is not possible and therefore approximate solutions have to be found.

A trivial minimum can be found at V eff = V ext +V H +V xc, where V xc =
∑

ij |ψi〉
∑

(εj)ij〈ψj |,∑
(εj)ij = 〈ψi|

∑
(εi)|ψj〉, and ψ and ε are the eigenfunctions and eigenvectors of H0, respec-

tively [7]. The averaging of the hermitian parts results in:

V xc =
1

2

∑

ij

|ψi〉
{

Re
[∑

(εi)
]
ij

+ Re
[∑

(εj)
]
ij

}
〈ψj |. (2.88)
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The total energy is then calculated based on the adiabatic connection formalism [69], where

the one-body Hamiltonian, H0, evolves into the total Hamiltonian, Ĥ, of Eq. 2.84. A smooth

path of adiabatic connection can thus be parametrised by defining λ, which is set from λ = 0

to λ = 1, corresponding to the bare QP to the dressed QP, respectivly [69].

2.3.3 Band-Gaps and Quasiparticles

Most computationally affordable GW calculations employ the LDA eigenfunctions, as the

starting point, to generate the self-energy Σ ≈ iG0W0: from the LDA polarisation (or dielectric

constant) one obtains the screened interaction W0 which in turn is used to determine the self-

energy with the Green function G0 [6].

When employing G0W0, it has been demonstrated that the fundamental band-gaps in sp3

covalent materials show an improvement over LDA [70]. Inspite this, the one-shot GW band-

gaps are still underestimated, when compared to experimental, even for weakly correlated

semiconductors [7] (Fig. 2-9). One-shot GW approaches are rather unsatisfactory, since the

QP levels are closely related to the quality of the ground-state wave-functions (DFT exchange-

correlation functional).

By applying a self-consistent calculation for the self-energy (Hedin’s equation), and by

constructing the screened interaction W within the random-phase approximation [71], it has

been observed that the QP band-width of the homogeneous electron gas is increased in weight

when compared with non-self-consistent calculations [71]. This feature is also observed for

calculations with partial self-consistency using a fixed W [71]. Since results based on self-

consistent calculations also present inaccuracies when compared to experimental evidences,

suggestions are therefore drawn that non-self-consistent results are to be preferred, unless

vertex corrections are included [71].

Since QSGW applies an Hamiltonian that is found by optimisation (minimising the pertur-

bation to H0) it is expected that calculations will predict more reliable ground- and excited-

states properties for a large number of weakly and moderately correlated materials [7]. Calcu-

lations result in reliable QP levels for a wide range of materials: not only in the description of

the fundamental gaps in semiconductors but also for the majority of the energy levels. Even in

strongly correlated d- and f -electron systems, errors are somewhat larger than experimental

evidences, but these are still systematic [8].

Although the increase of accuracy of QSGW, this method tends to slightly overestimate

semiconductor band-gaps and underestimate dielectric constants [69]. The reason for this is

because W does not include electron-hole correlation within RPA; the inclusion of the correla-

tion energy would effectively reduce the pair excitation energy in its intermediate states [69],

which can be accounted for via vertex corrections in W [8] (Fig. 2-10).
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Figure 2-9: Fundamental gaps of sp compounds from LDA (squares) and the one-shot ap-
proximation (G0W0) (circles) (top panel), and from QSGW (bottom panel). The G0W0 gaps
improve over the LDA, but these are still underestimated (from Ref. [7]).
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Figure 2-10: Theoretical and experimental band-gaps of several compounds. Theoretical re-
sults are provided by calculations from DFT, self-consistent GW (scGW) within RPA and, by
including vertex corrections (electron-hole ladder diagrams, represented with filled triangles)
(from Refs. [6] and [8]).
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2.4 Lattice Dynamics

Materials modelling generally focuses on systems in thermodynamic equilibrium; however,

when systems are perturbed by external stimuli, such as temperature, interesting phenomena

tend to occur, e.g. phase transitions. For the majority of materials the main origin of entropy

is due to thermal vibration, and these cannot be accounted for if dynamics is neglected: if the

thermodynamic temperature is zero, entropy is effectively neglected. The study of the temper-

ature dependence of the properties of materials requires accounting for nuclear motion, because

the nuclei vibrate around their equilibrium positions, and the dynamic and thermodynamic

properties of solids will therefore depend upon the lattice vibrations.

2.4.1 The Harmonic Approximation

The normal modes of vibration in a solid can be thought of as particle-like and are known

as phonons. The energy of a phonon is given by the product of the quantum of action, the

Planck’s constant, h̄, and the angular frequency, ω. Due to fluctuations in the ground state

characteristic of the harmonic oscillator, the zero-point energy of a phonon mode is [72]:

E0 =
1

2
h̄ω (2.89)

which corresponds to motions at T = 0 K known as zero-point vibrations. The mean energy

of each vibrational mode, ν, with wave-vector, q, is given by:

E(q) = h̄ω(q)

[
1

2
+ n(q)

]
(2.90)

where q = (q, ν), n(q) is the phonon occupation number for each mode obtained from the

Bose-Einstein distribution with characteristic oscillator frequency ω. The phonon ocupation

number can be related to temperature, T , by:

n(q) = n(ω, T ) =

[
1

exp (h̄ω(q)/kBT )− 1

]
(2.91)

where kB is Boltzmann’s constant.

The thermodynamic properties of a solid are directly related to its phonon structure. The

entire set of phonons described by the phonon dispersion relations define the phonon density

of states, which determines the heat capacity of the crystal.

Considering a phonon, with wave-vector q and band index ν (with q = (q, ν)), the dis-
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placement of any atom j with mass m in the unit-cell l will be given by:

u(jl) =
1√
Nmj

∑

q

e(jq) exp [iq · r(jl)]Q(q) (2.92)

where r is the atom position, N is the number of unit-cells, e(q) is the mode eigenvector

(also known as the displacement vector or polarisation vector) which gives the direction of the

movement of the atom; and Q(q) is the normal mode coordinate, which gives the amplitude

and the time dependence.

The vibrational modes are called the normal modes of the system, and these are given by

travelling waves with a characteristic frequency. From Eq. 2.92, one obtains [73]:

Q(q) =
1√
N

∑

j,l

√
mj exp [−iq · r(jl)]e∗(jq) · u(jl) (2.93)

where each normal mode follows the orthogonality relation:

∑

j

e(j,q, ν) · e(j,−q, ν ′) = δν,ν′ (2.94)

By considering the potential energy of phonon system, as a function of the atomic positions,

V [u(j1, l1), · · ·u(jn, ln)] [73], and since the atoms vibrate around their equilibrium position,

determined by the minimum of the energy surface, the potential energy can be Taylor-expanded

as a function of the atomic displacements from equilibrium [74]:

φ = V0 +
1

2

∑

j , j′
l , l′

∂2V

∂uj,l∂uj′,l′
uj,luj′,l′ + · · ·

+
1

n!

∑

j,··· ,j(n)
l,··· ,l(n)

∂nV

∂uj,l · · · ∂uj(n),l(n)
uj,l · · ·uj(n),l(n) (2.95)

where V0 is the potential energy with all atoms at rest. There is no first-order term in the

expansion because by definition at equilibrium the residual forces are zero.

The simplest model to study lattice dynamics is the harmonic approximation (HA) in

which the Taylor-expansion of the potential (Eq. 2.95) is truncated to second order. The

successive terms in the series expansion of the crystal potential energy (higher order terms)

are the anharmonic terms, from which one can obtain the physical effects of anharmonicity

such as thermal expansion, changes in normal mode frequencies with temperature, and thermal

resistivity [72].
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The assumption of the harmonic approximation is that atomic displacements have to

be small so that energy can be described as a harmonic function of the relative displacements

of the neighbouring atoms.

The harmonic phonon energy can be re-written in terms of Eqs. 2.90 and 2.91 as [75, 13]:

E(q) =
∑

q

h̄ω(q)

[
1

2
+

1

exp (h̄ω(q)/kBT )− 1

]
(2.96)

The constant-volume heat capacity can be obtained through the relation:

CV =

(
∂E

∂T

)

V

=
∑

q

h̄ω(q)

[
∂n(ω, T )

∂T

]

=
∑

q

kB

[
h̄ω(q)

kBT

]2 exp (h̄ω/kBT )

[exp (h̄ω)/kBT )− 1]2
(2.97)

The Helmoltz free energy, F , can be defined in terms of the canonical partition function,

Z, by [75]:

F = −kBT lnZ (2.98)

where Z defines the partitioning of energy among the energy levels associated with the degrees

of freedom of the system [76, 13, 77], and for a crystal is given by:

Z(T ) = exp (−φ/kBT )
∏

q

exp [−h̄ω(q)/2kBT ]

1− exp [−h̄ω(q)/kBT ]
(2.99)

where φ is the potential energy of the crystal, and the product runs over vibrational modes ν

and reciprocal-space wave-vectors q [78, 13, 77].

The temperature-dependent Helmoltz free energy is hence given by [79, 75, 13, 77]:

F (T ) = φ+
1

2

∑

q

h̄ω(q) + kBT
∑

q

ln [1− exp [−h̄ω(q/kBT )]] (2.100)

The second term is a sum of the modal contributions to the zero-point vibrational energy,

and the third term is the contribution of each mode to the internal energy due to thermal

occupation of the phonon energy levels.
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The entropy is readily obtained by defining:

S(T ) = −
(
∂F

∂T

)

V

= −kB

∑

q

ln [1− exp [−h̄ω(q/kBT )]]

− 1

T

∑

q

h̄ω(q)n(ω, T ) (2.101)

The thermal properties of solids at constant volume can be evaluated from their phonon

density of states, g(ω), which counts the number of modes with angular frequencies between

ω and ω + dω. The harmonic phonon energy can thus be written in the form:

E =

∫
h̄ωg(ω)

[1

2
+ n(ω, T )

]
dω (2.102)

Phonon frequencies are derived from the restoring force in response to the displacement of

ions by a small amplitude from their equilibrium positions. The interatomic force constants

(IFCs) can either be computed from the linear response method (e.g. density-functional per-

turbation theory, DFPT), or the direct method. The former considers that the force constant

matrix (or dynamical matrix) is computed in terms of the inverse dielectric matrix describ-

ing the response of the valence electron density to a periodic lattice perturbation [80]. The

direct method (or finite-displacement method) consists of employing the forces calculated via

the Hellmann-Feynman theorem in the total energy calculations, to derive the force constant

matrices. The Parlinski-Li-Kawazoe supercell approach is commonly employed [80, 81] and

the method manages to capture the long-range contributions to the IFCs between atoms in

different crystallographic unit-cells, which are needed to accurately calculate the frequencies

of short-wavelength phonon modes [78]. In practice one has to perform force calculations on a

series of symmetry-inequivalent displaced structures and fit the force/displacement curves to

a harmonic function. A force on an atom is the first derivative of the potential energy with

respect to an atomic position

Fj,l =
∂V

∂uj,l
(2.103)

and the second-order force constant is hence

φj,l;j′,l′ =
∂2V

∂uj,l∂uj′,l′
(2.104)

In the finite displacement method the force constant equation is approximated as [81]

φj,l;j′,l′ ' −
Fj′,l′;∆uj,l − Fj′,l′

∆uj,l
(2.105)
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where Fj′,l′;∆uj,l are the forces of the atoms displaced by ∆uj,l.

2.4.2 The Quasi-Harmonic Approximation

In the harmonic model, the equilibrium positions are independent of temperature. The

anharmonic effects needed to account for thermal expansion can be introduced by the quasi-

harmonic approximation (QHA), in which the thermal expansion of the crystal lattice is ob-

tained from the volume dependence of the phonon frequencies. The evaluation of the equilib-

rium volume and Gibbs free energy at a temperature T is obtained by minimising the function

G(T, p) for a given (constant) pressure p [76, 79]:

G(T, p) = min
V

[φ(V ) + F (V, T ) + pV ] (2.106)

where minV means that for each value of T and p, the function is minimized with respect to

the volume.

The heat capacity at constant-pressure is then derived from G(T, p) by:

Cp(T, p) = −T
[
∂2G(T, p)

∂T 2

]

P

= CV + T

[
∂V (T, p)

∂T

]

p

[
∂S(T, V )

∂V

]

T

(2.107)

with V (T, p) being the equilibrium volume at T and p [79, 13].

To perform a QHA calculation, the phonon frequencies are computed for a range of expan-

sions and compressions about the equilibrium volume (which corresponds to T=0 K). All the

new expanded and compressed volumes are relaxed (ion relaxation without allowing change

of the cell shape) and the free energies are then computed for all these volumes. From this

approach, the equilibrium volume, bulk modulus and Gibbs free energy can thus be obtained

at arbitrary temperatures by fitting the free energies as a function of volume to an equation

of state [82, 83]. The temperature effect is thus included into the total energy of electronic

structure through the Helmholtz free energy at constant volume. By increasing temperature,

the volume dependence of the free energy changes, hence the equilibrium volume for diferent

temperature values also changes. The temperature dependence of various derived properties,

e.g. volumetric expansion coefficients and the mean Grüneisen parameter, are then readily

obtained.

The mode Grüneisen paramaters, γ(q), quantify the change in each phonon frequency with
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volume V through [84, 73]:

γ(q) = − V

ω(q)

∂ω(q)

∂V
= −∂ lnω(q)

∂ lnV
(2.108)

These are related to the temperature-dependent mean Grüneisen parameter by:

γ =
∑

q

C(q)γ(q)

CV
(2.109)

where CV is the constant-volume heat capacity at volume V , and C(q) are the contributions

from individual modes:

C(q) = h̄ω(q)
∂n(T, ω(q))

∂T
. (2.110)

Within the QHA, the mean Grüneisen parameter is related to the volumetric thermal

expansion coefficient, αV, according to:

αV =
∂ lnV

∂T
=

1

BV

∑

q

C(q)γ(q) (2.111)

where B is the (temperature-dependent) bulk modulus.

When the mean Grüneisen parameter, γ, is negative, αV will likewise be negative, indicating

negative thermal expansion (NTE), i.e. a reduction in volume upon heating [84, 85, 86]. NTE

behaviour in bulk systems has been linked to a number of microscopic mechanisms, including,

among others, ferroelectric, magnetostrictive and displacive phase transitions, low-frequency

phonon modes and rigid-unit modes [85].

2.4.3 Soft-Mode Theory

The energy associated with the lattice vibrations of a crystal is expressed in terms of an

Hamiltonian written as a series expansion of the crystal energy in normal mode coordinates,

Q [72] 8:

H =
1

2

∑

q

Q̇(q)Q̇(−q) +
1

2

∑

q

ω(q)2Q(q)Q(−q) +
1

4

∑

q

∑

q′
α(q, q′)η2Q(q)Q(−q)

=
1

2

∑

q

Q̇(q)Q̇(−q) +
1

2

∑

q


ω(q)2 +

1

2

∑

q′
α(q, q′)η2


Q(q)Q(−q) (2.112)

8It is possible to write the Hamiltonian in quantised form by replacing the normal mode coordinates, Q and
Q̇, by appropriate operators, Q̂ and P̂ , respectively [72].
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The first term of Eq. 2.112 refers to the kinetic energy. The second term is the normal

harmonic energy, where ω is the harmonic frequency, which denotes all vibrational modes ν

with vector q, with the exception of the soft-mode. The third term refers to the anharmonic

interaction, which is the fourth-order term of the series expansion (in practice it is the dominant

term within the soft-mode theory and therefore will be the only anharmonic term considered)

[9]. The coefficient α refers to the anharmonic coupling of the order parameter which measures

the degree of order of a phase transition and thus characterises the transition, η, with any

mode in the crystal [9], including the soft-mode denoted by q′.

The time derivative of Q, which defines the kinetic energy term of Eq. 2.112, has the form

of:

Q̇(q) = −iω(q)Q(q) (2.113)

For an atom in a unit-cell, there are 3N branches in the dispersion (N is the number of

atoms contained in the unit-cell), corresponding to 3N modes of motion. At small wave-vectors

(q → 0) there are three modes, where all atoms move in phase and are termed the acoustic

modes. The remaining modes are optical, and are characterised by atoms moving out of phase,

and their frequencies are non-zero at q→ 0 [72].

When a static distortion occurs, the frequencies are modified as [9, 72]:

ω̃(q)2 = ω(q)2 +
1

2

∑

q′
α(q, q′)η2 (2.114)

where ω̃ is the frequency taking account both of the harmonic and anharmonic interactions.

The temperature dependence of the order parameter can be defined through thermal aver-

aging as:

η2 = 〈Q(q′)Q(−q′)〉

for which, and by obeying the conservation of crystal momentum, it is required that 〈Q(q′)Q(−q′)〉 6=
0 if q′ = −q. The thermal average maybe given by the relation [9]:

〈Q(q)Q(−q)〉 =
h̄

ω̃(q′)

[
1

2
+ n(ω̃q′ , T )

]
≈ kBT

ω̃(q′)2
when kBT ≥ h̄ω̃(q′) (2.115)

In the high-temperature limit Eq. 2.114 can therefore be written as [9]:

ω̃(q)2 = ω(q)2 +
kBT

2

∑

q′

α(q, q′)
ω̃(q′)2

(2.116)
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Eq. 2.116 defines the relation of a set frequencies ω̃(q)2 called the renormalised phonon fre-

quencies, which have an explicit temperature dependence [9].

By performing lattice dynamics calculations on a high-temperature phase, at least one

imaginary harmonic frequency [9] will be evidenced. The imaginary frequency is expressed

as a normal mode coordinate, in which the harmonic term of ω̃(q)2Q(q)Q(−q) must have a

maximum energy when Q has a value of zero. This is only possible if ω2(q) < 0, meaning that

ω̃(q) is imaginary [9]. The potential energy of the high-temperature phase is at the maximum

with respect to the distortion mode that accompanies the phase transition [72] and which

characterises a specific atomic displacement [72, 9].

A stable phase exists at lower temperatures and will correspond to a lower symmetry dis-

torted structure. When the temperature is increased, the high-symmetry structure stabilises,

and therefore the corresponding mode will increase in value and become positive (real). The

temperature at which the mode reaches zero is the transition temperature (Tc) [9]. The value

of the frequency will be determined by the restoring forces in response to a set of atomic

displacements about their equilibrium positions.

Figure 2-11: Representation of the behaviour of the soft mode. At low temperatures (T ≤
Tc) the soft mode is unstable, which is represented by ω̃. Thus the structure of the high-
temperature phase is unstable. On heating, the anharmonic interactions contribute positively
to the value of ω̃, until the frequency reaches zero at the transition temperature (Tc). Above
this temperature the soft-mode frequency has a real value, and thus the high-temperature
phase is stable (from Ref. [9]).

If the transition involves small symmetry-breaking displacements, this transition is con-

sidered to be of displacive nature, and occurs when temperature or pressure is applied to the

system [72]. Taking as an example, the perovskite structure, in its high-symmetry phase (usu-

ally cubic in symmetry) the small displacements are produced by rotations of the octahedral
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cages around the cation. The symmetry of the lattice will thus be lowered and there will be a

change in the description of the volume of the unit-cell.

Ferroelectric transitions occur when the system undergoes the breaking of the centre-of-

symmetry, giving rise to a net dipole moment in the unit-cell, thus producing a macroscopic di-

electric polarisation of the crystal [73]. The idea of soft-mode in a ferroelectric phase-transition

is implicit in the relation between the longitudinal optic (LO) and transverse optic (TO) modes

at the zone-centre of ionic structures since the long-range fields at q → 0 are not equivalent.

This relation is known as the Lyddane-Sachs-Teller (LST) relation and relates the limiting

values of the LO and TO frequencies to the dielectric constants for oscillating electric fields of

zero (static) and infinite (high) frequencies through the ratio:

ε(ω = 0)

ε(ω =∞)
=
ω2
LO

ω2
TO

(2.117)

Since a ferroelectric phase transition is characterised by presenting a divergence of the static

dielectric constant, at the phase transition, the LST relation implies that ω2
TO → 0 (softening

of the TO mode at q→ 0).

Other types of phase transitions exist, which involve soft-modes with wave-vectors at the

Brillouin zone boundaries: zone-boundary (antiferroelectric) phase transitions. In these cases

the soft-modes can either be acoustic or optic. A zone boundary phase transition implies that

the unit-cell of the low-temperature phase is doubled in one or more directions. Examples exist

where the neighbouring unit-cells of the high-temperature phase develop dipole moments, but

since these are in opposite directions, the unit-cell at low temperature has no net moment [72].

The soft-modes considered in ferroeleastic phase transitions involve the softening of an

acoustic mode. Although, and since at q = 0 the frequency is already zero, the softening

involves the slope of the acoustic mode falling to zero, which corresponds to a softening of the

elastic constants. The gradient of the soft acoustic mode as q→ 0 gives the velocity of sound,

square of which provides information regarding one of the elastic constants [72].

2.5 Macroscopic Polarisation for Ferroelectric Phase Transi-

tions

Macroscopic polarisation is a vector quantity that quantifies the electric dipole moment

per unit vector. Spontaneous macroscopic polarisation is when a finite polarisation persists

even in the absence of an external perturbation and defines the equilibrium properties of a

ferroelectric material [87].

Ferroelectric materials are insulting solids that at equilibrium display a broken-symmetry

(non-centrosymmetric) structure [10, 88]. Long-range electrostatic forces favour a polar struc-
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ture, and therefore tend to drive polar instabilities. However, it has recently been suggested

that metals can also show spontaneous polarisation due to certain local bonding preferences

which persist even in the presence of screening by charge carriers [89].

If the centre-of-symmetry is broken, the crystal may have one or more polar axes. Crys-

tals with a unique polar axis9 are ferroelectric and possess spontaneous electric polarisation.

Crystals with more than one polar axis, are piezoelectric, and manifest an electric polarisation

in response to the application of elastic stress [10, 88].

The surface of a ferroelectric crystal attracts free charges from its environment to neutralise

the effective surface charge resulting from the polarisation discontinuity. Screening effects are

pronounced in ultra-thin ferroelectric films, where the internal electric fields generated by the

ferroelectric dipoles are sufficiently large to produce electronic and ionic currents.

There are different groups of ferroelectric material, among which are proper and improper,

hyperferroelectrics and Ferroelectric Rashba Semi-Conductors (FERSC). These classifications

are mostly based on symmetry rules, on the dynamics of the phase transition from the high-

temperature centrosymmetric to lower-temperature polar phase, and on the characterisation

of the soft-mode instabilities.

1. A proper-ferroelectric (conventional ferroelectric) is characterised by a reference, non-

polar, structure; due to a polar distortion, the symmetry is lowered to a polarised ground-

state phase. From a microscopic point-of-view, the reason for this structural instability

is due to the existence of unstable optic modes (imaginary modes) at the zone-center of

the BZ (Γ-q point) [90, 91, 92], more specifically unstable transverse optic modes. Since

in very thin films (> 10 nm) there are very large depolarisation fields due to the surface

charge accumulation, strong electric fields may counteract the polar displacements, with

the possibility that these depolarisation fields may suppress completely the ferroelectric

distortion. Examples of proper-ferroelectrics are conventional perovskite materials, such

as PbTiO3 and BaTiO3.

2. Improper-ferroelectrics do not have an unstable polar distortion in their high-symmetry

structure; instead, these may have one or more unstable non-polar distortions [91]. Since

the primary distortion is non-polar, the depolarisation field is too weak and therefore

thin films do not experience the same problems as in proper-ferroelectrics; respective

slabs may develop a finite polarisation normal to the surface [91]. While for a proper-

ferroelectric the polar distortion acts as the primary order-parameter in the phase tran-

sition, for improper-ferroelectrics the polarisation emerges due to another, non-polar,

order parameter of different physical origin. Depending on the material these can be the

rotation/tilts of the perovskite cages, magnetic ordering, etc. The polarisation develops

9A polar axis is defined by the orientation of the dipole moment.
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as a by-product of some other complex lattice distortion.

3. A hyperferroelectric has the ability to spontaneously polarise even in the presence of an

unscreened depolarisation field, which gives these materials an advantage over proper-

ferroelectrics, since they are less sensitive to surface and low-dimensional confinement

effects. This feature arises not only because of the instability of the TO mode (similar to

the one in proper-ferroelectrics), but also due to an additional instability of a longitudinal

optic (LO) mode [92]. Unlike insulating ferroelectrics, which possess a wide energy band-

gap, large Born-effective charges and small dielectric constants, hyperferroelectics exhibit

low effective charges and large dielectric constants, as a consequence of a small gap [92].

4. FERSC materials evidence the combined properties of directed polarisation (ferroelec-

tricity) and spin-orbit coupling (SOC) effects. These effects can be evidenced in small

band-gap materials, such as chalcogenides (the most well knwon FERSC is GeTe). The

advantage of FERSC materials is the possibility of controlling the spin-texture via a

switchable electric bias, instead of magnetic fields, as a potential alternative to spin-

tronic devices [17].

The changes in polarisation are rigorously defined and can be calculated through ab initio

electronic structure methods [93] through the evaluation of the Berry phase expressions of the

Modern theory of polarization [94]. Macroscopic polarisation is an experimentally measurable

observable [93]. A typical measurement can be performed through polarisation reversal, where

a hysteresis cycle can be traced which corresponds to the integrated macroscopic current flowing

through the sample [87]. Therefore changes in polarisation are quantities that can be directly

measured and calculated [95].

2.5.1 The Berry Phase Expressions

Within the independent-particle approximation, all physical quantities can be calculated

through integration over filled electronic bands in the BZ, by taking advantage of the periodicity

of k space. The change in polarisation can be found when a parameter of the Hamiltonian λ,

i.e. potential, changes adiabatically with time [95].

From the definition that a change in polarisation can be determined from the polarisation

current that flows through the bulk, the macroscopic current density, j, we have [87]

dP(t)

dt
= j(t) (2.118)

therefore implying

∆P = P(∆t)−P(0) =

∫ ∆t

0
dt j(t) (2.119)
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In the adiabatic limit, j→ 0 and ∆t→∞. By replacing t by the parameter λ, a dimension-

less adiabatic time varying continuously from λ = 0 (initial system) to λ = 1 (final system),

we have

∆P =

∫ 1

0
dλ

∂P

∂λ
(2.120)

λ = 0 refers to the reference centrosymmetric structure, and λ = 1 is the polarised structure,

and ∆P corresponds to the spontaneous polarisation [87]. The macroscopic electric field is

required to vanish for any value of the parameter λ [87, 95].

Integrating Eq. 2.120 with respect to λ, the effective polarisation is:

∆P = ∆Pion + [Pel(1)−Pel(0)] (2.121)

where Pion refers to the nuclear contribution.

The eigenfunctions obey both the Bloch relation: ψnk(r) = eik.runk(r), where unk(r) =

eiG·run,k+G(r) is lattice-periodic for all reciprocal lattice vectors G and n is the band index;

and the Schrödinger equation: Hk,λ|unk〉 = Enk|unk〉, where Hk,λ = (p + k)2/2m + VKS,λ.

These quantities depend on λ, which changes slowly in time, such that the wave-functions

acquire a first-order perturbation correction [94].

The corresponding first-order current is then

jn =
∂Pn

∂t
=

ieλ̇

(2π)3

∑

m 6=n

∫
dk
〈ψnk|p|ψmk〉〈ψmk|∂VKS

∂λ |ψnk〉
Enk − Emk

+ c.c. (2.122)

where m are the unoccupied bands, e is the electron charge, and c.c. is the complex conjugate.

Since

∂Pn

∂t
=
∂λ

∂t
⇐⇒ ∂Pn

∂λ
=
∂t

∂t

we can remove t and rewrite the matrix elements as cell-periodic functions, where the expec-

tation values in terms of the commutators follow from the definition of Hk,λ [95]:

〈ψnk|p|ψmk〉 =

〈
unk

∣∣∣∣
[
∂

∂k
, Hk,λ

]∣∣∣∣umk

〉
(2.123)

and

〈
ψnk

∣∣∣∣
∂Vk,λ
∂λ

∣∣∣∣ψmk

〉
=

〈
unk

∣∣∣∣
[
∂

∂λ
,Hk,λ

]∣∣∣∣umk

〉
(2.124)

46



Therefore, substituting Eqs. 2.123 and 2.124 into Eq. 2.122, we obtain:

∂Pn

∂λ
=

ie

(2π)3

∫
dk

〈
∂unk
∂k

| ∂unk
∂λ

〉
+ c.c. (2.125)

The sum over unoccupied bands m disappears, which indicates the polarisation to be a

ground-state property.

By using Eq. 2.121 in Eq. 2.125, summing over the occupied bands and integrating by

parts with respect to λ, we hence obtain the spontaneous polarisation [87, 94]

∆Pel =
ie

(2π)3

∑

n

∫
dk

{[〈
unk

∣∣∣∣
∂

∂k

∣∣∣∣unk
〉]1

0

−
∫ 1

0
dλ

∂

∂k

〈
unk

∣∣∣∣
∂

∂λ

∣∣∣∣unk
〉}

(2.126)

Since the last term of Eq. 2.126 is periodic in k, the gradient of this quantity integrated

over the BZ is zero10. Therefore, we arrive at:

Pel(λ) =
ie

(2π)3

∑

n

∫
dk

〈
unk

∣∣∣∣
∂

∂k

∣∣∣∣unk
〉

(2.127)

The term A(k) = i
〈
unk

∣∣ ∂
∂k

∣∣unk
〉

= i 〈unk |∇k|unk〉 is the Berry connection, also known

as the gauge potential. The Berry phase is therefore the integration over a closed manifold,

which in the present context is the Brillouin zone [96, 87]. The result will only depend on the

end-points and ignore the path defined by the parameter space.

The total polarisation is finally obtained by adding the ionic contribution to Eq. 2.127 [87],

P = Pel + Pion. Therefore:

P =
ie

(2π)3

∑

n

∫
dk

〈
unk

∣∣∣∣
∂

∂k

∣∣∣∣unk
〉

︸ ︷︷ ︸
Pel

+
e

Ω

∑

s

Z ion
s rs

︸ ︷︷ ︸
Pion

(2.128)

where Ω is the volume of the unit-cell, Z ion
s are the bare nuclear charges located at the atomic

positions rs, and the band index n runs over all bands 11 [87].

The formal polarisation obtained in Eq. 2.128 is a well-defined modulo eR/Ω (R is any

lattice vector). For a given adiabatic path, defined in Eq. 2.120, the change in polarisation

is given by a single-value vector quantity that is perfectly well defined. Since the integrated

adiabatic current flow is ∆P = (Pλ=1 − Pλ=0) + eR/Ω [87], this last term will represent the

quanta of polarisation which is obtained in integer multiples of 2π [95]. The geometric phase

10From Gauss’s theorem (surface integral)
∫
V

(∇ ·A)dτ =
∮
S
A · ds, and A→ 0 everywhere on the surface of

an arbitrarily large enclosure.
11When performing a pseudopotential calculation, n runs only over the valence bands and Z ion is the net

positive charge of the nucleus and the core electrons.
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is non-zero only if the periodic functions, unk, are complex. This only occurs when there is

no center of inversion, which is the condition under which spontaneous polarisation emerges.

The change in macroscopic polarisation between two different insulating states can therefore

be seen as a measure of phase differences between the initial and final wave-functions [95].

2.5.2 Born-Effective Charges

The definition of Born-effective charge (BEC), Z∗, is the induced polarisation of the bulk

along direction i due to a unit displacement direction j of equivalent ions [93] in zero macro-

scopic electric field [87]:

Z∗ij =
Ω

e

δPi
δdj

(2.129)

The BEC tensors, Z∗ij , measure the coupling of a macroscopic field with relative sub-lattice

displacements (zone-centre phonons) [87].

The change in polarisation due to ionic displacements is thus determined by the effective

charge times the displacement

∂Pi =
e

Ω
Z∗ijδdj (2.130)

The total polarisation is then obtained by summing over the contributions from the displace-

ments of all ions [93].

In highly polarisable ferroelectrics, small electric fields generate large forces on the ions,

which are mediated by the anomalously large BECs. The force induced on an ion by a uniform

macroscopic electric field E at direction j, is given by:

Z∗ij = −e δFi
δEj

(2.131)

It is possible to calculate the BEC tensors either with linear-response approximations (e.g.

density-functional perturbation theory - DFPT) or using the Berry phase relations, where the

derivative of 2.129 is approximated using finite-differences, i.e.:

∂P z

∂dz
≈ P z(+δz)− P z(−δz)

2δ
(2.132)

where P z(±δz) is the polarisation induced along the positive/negative z-direction when an ion

is displaced by a small amount, δ.

The BECs are useful for analysing ferroelectric materials, where anomalously large values
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of the BEC are typically characteristic of these physical phenomena [97]. These charges are

also essential in defining the LO-TO optical phonon splitting in polar crystals.

2.5.3 Landau Theory of Ferroelectrics

Landau theory serves as a bridge between microscopic models and macroscopic phenomena.

The theory assumes spatial averaging of local fluctuations, and is therefore well suited to

studying systems with long-range interactions, such as ferroelectrics [88].

Since Landau theory is a symmetry-based analysis of equilibrium behaviour near a transi-

tion, it is possible to use this theory to describe a phase transition. Phase-transitions may be

first-order, when a discontinuous change in the structure and entropy is observed, and hence

latent heat at the transition temperature is evidenced; or second-order, where the structure

of the low-temperature phase varies continuously to the high-temperature phase and only a

discontinuity in the derivative of the entropy is observed [9].

Landau theory can be seen as a Taylor expansion of the free energy in terms of an order

parameter. The order parameter describes the change in symmetry through the phase transi-

tion, and is defined as zero for the high-symmetry (ordered) phase, and changes continuously

to a finite value as the symmetry lowers. For the example of a paraelectric-to-ferroelectric

phase transition, the polarisation, P , is typically chosen to be the order parameter [88]. At

the vicinity of the transition, the free energy, F , is expanded as a power series of P :

F(T ) =
1

2
a(T )P 2 +

1

4
b(T )P 4 +

1

6
c(T )P 6 + · · · − EP (2.133)

where a, b and c are temperature-dependent coefficients, E is the electric field and P the

polarisation. The equilibrium configuration is determined by minimizing F with respect to P :

∂F
∂P

= 0 (2.134)

If the coefficients are all positive, the free energy has a minimum at the origin (Fig. 2-12.a).

Ignoring the higher-order terms and considering only terms up to the second order (assuming

that the values of the higher-order coefficients are relatively small), the polarisation induced

by an electric field is calculated by [10]

∂F
∂P

= aP − E = 0 (2.135)

and thus one obtains the dielectric susceptibility

χ =
P

E
=

1

a
(2.136)
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If the coefficients were chosen such that a < 0, while b > 0 and c > 0, then F would resemble

Fig. 2-12.b, with a minimum located at a finite polarisation, P . The ground-state would thus

have a spontaneous polarisation and would therefore be ferroelectric [88]. If one assumes that

a(T ) varies linearly with temperature (changing sign at the transition temperature, T0), a

ferroelectric transition would occur.

On the other hand, when b < 0, and c > 0, we obtain a first-order phase transition, since

the quartic coefficient is negative, and hence T > T0, and F has a minimum at P 6= 0. As a

is reduced, the temperature is lowered, and the minimum will decrease in energy to below the

unpolarised state, and hence will be the thermodynamically favourable phase. The temperature

at which this effect occurs is the Curie temperature, Tc, which exceeds T0. At temperatures

between Tc and T0, the unpolarised phase exists as a local minimum (Fig. 2-13).

Figure 2-12: Squematics of second-order phase transitions. a) Free energy as a function of
polarisation for temperature ranges above and below the transition temperature. b) Sponta-
neous polarisation P0(T ) as a function of temperature; P vanishes smoothly at the transition
temperature Tc = T0. c) Dielectric susceptibility χ as a function of T (from Ref. [10]).

2.6 Methodology Overview and Applications

Several methodologies have been discussed throughout the present chapter and the aim

was intended to provide an overview of existing methodologies to study the electronic and

phonon properties of bulk materials and clarify the technical capabilities of respective methods.

Density-Functional Theory, by applying plane-wave basis sets and PAW pseudopotentials, has

been used for all the studied systems. The goal was to compute the optimized structures

and respective ab initio equilibrium properties (lattice parameters, bulk modulii) and the
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Figure 2-13: Schematics of a first-order phase transition. a) Free energy as a function of po-
larisation for temperature ranges above and below the transition. b) Spontaneous polarisation
P0(T ) as a function of temperature; the order parameter jumps discontinuously to zero at
T = Tc. c) Dielectric susceptibility χ as a function of T (from Ref. [10]).

force-constants, required for lattice dynamics calculations. Moreover, for the bilayer graphene

the electronic band structures were computed within the DFT framework. Lattice dynamics

calculations were carried out for the three projects to compute the thermal properties and

phonon dispersions of the systems under interest. For the CsSnI3 and GeTe structures the

quasi-harmonic approximation was employed in order to model the temperature dependence

of the material properties on the DFT free-energy surface, whereas for the bilayer graphene

system only the harmonic approximation was used to compute the phonon dispersion as a

function of the applied perturbation. While for the perovskite CsSnI3 system, a more complete

analysis of the temperature dependant properties was performed (Gibbs free energy, thermal

expansion, temperature-dependant bulk modulus, Grüneisen parameter, etc), for the GeTe

system the quasi-harmonic approach was mostly employed to analyse the phonon dipsersion as

a function of temperature in order to probe the dynamical stability of the two phases of GeTe.

Moreover further analysis was required to study the specific nature of each of the systems

under interest, reason why other methodologies were also applied.

For the CsSnI3 structure interest lay in decomposing the structural distortion into contri-

butions from lattice modes with different symmetries, and investigate the physical mechanisms

which stabilise the Pnma phase. For such purpose the AMPLIMODES code was required.

Many-body perturbation theory (self-consistent method) was chosen to compute the quasi-

particle electronic band structure of the ferroelectric phase of GeTe and therefore obtain a more

accurate description of the Rashba-spin splitting. The code used to carry out such calculations
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was an all-electron code which makes use of Plus Muffin-Tin Orbitals to expand the Kohn-Sham

wavefunctions, integrating both atom-centered and plane-wave envelope functions.

To analyse the macroscopic mechanism of the ferroelectric transition, and to model respec-

tive properties through the phase transition, one also needs to utilise phenomenological Landau

theories. We have applied this model, in conjunction with our DFT free-energy calculations,

to calculate the evolution of the polarisation, from the centrosymmetric to the ferroelectric

phase, and therefore assessing the hysteresis behavior for this specific system. Since one of the

input parameters required to evaluate the Landau free energy are the dielectric constants, and

since these are dependant on the band-gap width of the material, hybrid functionals (HSE06)

was used. The semi-local functional, PBEsol, underestimates the width of the gap providing

a metallic description of the high-symmetry phase of GeTe and therefore widely overestimat-

ing the dielectric constant. The non-local HSE06 functional provides a better quantitative

description of the band-gap and hence more accurate values of the dielectric constants. Since

the spoantanoues polarisation was also required as input for the Free energy, the Berry phase

calculations were perfomred and therefore obtaining the polarisation difference between the

low-symmetry and high-symmetry structures.

To analyse the bilayer graphene systems convergence of the k-points against a very dense

sampling mesh was essencial in order to obtain a reliable description of the electronic band-

structures at the vicinity of the Fermi energy. This feature was mainly observed for the AA-

stacking environment for which the crossing of the bands occur away from a high-symmetry k-

point. For such, band-structures computed with tight-binding methods were used for compar-

ative purposes when studying the acuraccy and convergence of the electronic band-structures

reproduced by DFT-LDA.
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Chapter 3

Cesium Tin Iodide (CsSnI3)

Paths are made by walking

Franz Kafka

The ground-state phases of most fluoride and halide perovskites are paraelectric (typ-

ically a non-polar Pnma phase), exhibit a ferroelectric instability in their higher-symmetry

tetragonal phases. This feature is also commonly observed in oxide perovskites. Nevertheless,

while in oxide perovskites ferroelectric instabilities may be induced through pressure or strain,

this may not be the case for instabilities originating from geometric effects (e.g. ionic radii in

fluoride or halide perovskites) [98]. Exceptions to this rule do exist, for example NaMnF3 [98],

where coherent heteroepitaxy destabilizes the Pnma structure, leading to a ferroelectric (and,

indeed multiferroic) ground state with an unusual polarisation/strain response.

CsSnI3 is an interesting inorganic halide-perovskite system which exhibits three different

perovskite phases [99, 16, 100], viz. two high-temperature and two ground-state forms. In the

present work, by employing the finite-displacement technique with density-functional theory,

we obtained the full phonon band structures and densities of states (DoSs) of all these phases.

As found in other literature [16, 100], we observed imaginary modes in the cubic Pm3m and

tetragonal P4/mbm phases. This indicates that the tetragonal phase is dynamically unstable,

with the phonon dispersion displaying imaginary optic modes at the high-symmetry wave-

vectors in the Brillouin zone. Soft modes were also observed at the zone centre, indicating the

existence of a ferroelectric instability. The main contribution to the imaginary modes were

found to be the ”rattling” motion of the caesium atom inside the perovskite cage. The cubic

structure also displays a zone-boundary instability, which is associated with motions of the

Sn-I cage framework.

We have also employed symmetry-mode analysis to decompose the structural distortions

into contributions from lattice modes with different symmetries. These are characterised by

the irreducible representations of the ”aristotype” cubic structure [101]. The relations between
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the displacement patterns of the soft phonon modes and the phase transitions between the

high-symmetry Pm3m and the low-symmetry Pnma phases will be discussed in detail for the

CsSnI3 perovskite system.

3.1 Phase Stability and Transformations in the Halide Per-

ovskite CsSnI3

The following paper summarises the work carried out during the first year of the PhD

programme by carrying out a complete study (electronic and vibrational) of the three differ-

ent phases of the halide perovskite CsSnI3. Within the present study, personal contributions

implied applying the acquired knowledge of DFT electronic structure calculations (plane-wave

expansion of the Kohn-Sham wavefunctions and PAW pseudopotentials), and learning the nec-

essary theoretical background to carry out lattice dynamics calculations within the harmonic

and the quasi-harmonic approximations.
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Phase stability and transformations in the halide perovskite CsSnI3
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We employ the quasiharmonic approximation to study the temperature-dependent lattice dynamics of the four
different phases of cesium tin iodide (CsSnI3). Within this framework, we obtain the temperature dependence
of a number of structural properties, including the cell volume, bulk modulus, and Grüneisen parameter. The
Gibbs free energy of each phase is compared against the temperature-dependent Helmholtz energy obtained from
the equilibrium structure within the harmonic approximation. We find that the black tetragonal perovskite phase
is not dynamically stable up to at least 500 K, with the phonon dispersion displaying negative optic modes,
which pass through all of the high-symmetry wave vectors in the Brillouin zone. The main contributions to the
negative modes are found to be motions of the Cs atom inside the perovskite cage. The black cubic perovskite
structure shows a zone-boundary instability, indicated by soft modes at the special q points M and R. These
modes are present in calculations at the equilibrium (0 K) lattice constant, while at finite temperature additional
negative modes develop at the zone center, indicating a ferroelectric instability. The yellow crystal, composed of
one-dimensional (SnI6)n double chains, has the same heat of formation as the orthorhombic perovskite phase at
0 K, but becomes less energetically favorable at higher temperatures, due to its higher free energy.

DOI: 10.1103/PhysRevB.91.144107 PACS number(s): 63.20.D−, 63.20.Ry, 63.70.+h

I. INTRODUCTION

CsSnI3 belongs to the perovskite family of materials with
the chemical formula ABX3 (A = Cs, B = Sn, and X = I).
This material undergoes a number of temperature-dependent
phase changes [1], corresponding mostly to rotations and
distortions of the perovskite octahedral cage formed by the
Sn-I bonding environment. Such distortions include bond
angle changes and the displacement of the caged cation [2].

There are two orthorhombic structures, which coexist at
room temperature, belonging to the Pnma space group. One
of these structures is an edge-connected one-dimensional (1D)
double-chain crystal (Y), which is yellow in color and has an
indirect band gap of 2.6 eV. The other structure is a corner-
linked 3D perovskite (Bγ ), discovered by Yamada et al. [3]
in 1991, which is black in color and has p-type conductivity
with a direct band gap of 1.3 eV. When exposed to air or
organic solvents, the Bγ phase undergoes a reconstructive
phase transition to the Y phase under ambient conditions.

Above room temperature, two higher-symmetry structures
are observed. When heated above 425 K, the Y phase
transforms to a black cubic Bα phase, with the Pm3m space
group. It was demonstrated by thermal analysis and x-ray
diffraction (XRD) that during cooling the Bα structure deforms
to a tetragonal (Bβ) structure (P 4/mbm space group) at
426 K [4]. On further cooling, the Bβ converts back to the
Bγ phase at 351 K [1,3]. The crystal structures of the four
phases are shown in Fig. 1.

The majority of the low-symmetry perovskite phases can
be derived from the high-symmetry cubic structure (known as
aristotypes) [5] by rigid tilting of the octahedral units around
one or more of their symmetry axes, maintaining both the
regularity of the octahedra and their corner connectivity [5].
Hence, the equilibrium position of the Cs atom can be thought
of as being determined by the position and tilting of the SnI6

*a.walsh@bath.ac.uk

octahedra for a given set of bond angles [2]. The tilting of
the octahedra can be interpreted in terms of lattice-vibrational
modes, with those giving rise to obvious tilt systems corre-
sponding to some of the most important modes associated
with the phase transitions in the system [6]. Based on a
group-theoretical analysis employing Glazer’s notation [6]
and the Landau theory of phase transitions, Howard and
Stokes [5] defined the group-subgroup relationships among
the 15 possible space groups resulting from octahedral tilting.
The order of the phase transition was identified by expressing
the order parameter as a linear combination of basis functions
defining a particular tilt system.

Based on this work, the Pm3m → P 4/mbm space group
transition (which will correspond to the Bα → Bβ transition
in the present study) was identified as being a continuous
second-order transition, in which one rotation occurs about the
c axis [5,7]. The P 4/mbm→ Pnma transition (corresponding
to the Bβ → Bγ transition) was similarly characterized as
being second order.

The unusual properties of the various CsSnI3 phases, in
particular the low-temperature Bγ polymorph, have attracted
interest for a variety of applications. Its optical properties
make it useful for light-emitting diodes, particularly as it
is soluble in certain organic solvents, and can therefore be
deposited on substrates or inside porous structures by solution
processing [8]. Also, its strong luminescence and large optical
absorption coefficient at shorter wavelengths make it suitable
for photovoltaics, and high efficiency has been observed for
solar-cell applications [1,8]. It is a viable Pb-free alternative to
the hybrid halide perovskite CH3 NH3 PbI3 [9–14]. In addition,
its high hole mobility, due to the small hole effective mass,
make it an excellent solid-state replacement for the electrolyte
in dye-sensitized solar cells [15]. The cubic phase of CsSnI3

also has interesting structural and optical properties, with
high absorption coefficients at infrared, visible, and ultraviolet
wavelengths, making it useful for optical and optoelectronic
applications working within this range of the electromagnetic
spectrum [16].

1098-0121/2015/91(14)/144107(12) 144107-1 ©2015 American Physical Society
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FIG. 1. (Color online) The four polymorphs of CsSnI3. On the top row, the three black perovskite structures are shown: (a) cubic Bα, (b)
tetragonal Bβ, and (c) orthorhombic Bγ . The bottom row shows the yellow crystal where the tin halide octahedral networks are fragmented into
one-dimensional chains (d). In all four images, the green spheres represent the Cs atom, while the purple polyhedra represent the octahedral
perovskite cage formed by the bonding of the Sn (steel blue) and I (dark purple) atoms.

By exploring the Cs position offsets and lattice expan-
sion [2], it has been predicted that the Bα structure is never an
energy minimum, and can be deformed to the Bβ state without
any energy barriers [2]. The structural transition between the
Bβ and Bγ phases is also expected to be reversible with
temperature [2]. However, the Bα and Bβ phases are both
high-temperature structures, and, according to Ref. [7], the
phase transitions are related to soft-mode displacements. The
temperature dependence of the phonon frequencies of the four
structures, and the corresponding effect on the crystal entropy
and free energy, are thus likely to play an important role in
defining the phase equilibria; these effects are not taken into
account through the internal lattice energies of the system
obtained from athermal electronic-structure calculations.

Over the past year, many studies have been carried out
on CsSnI3, focusing mainly on characterizing the phase
transitions between the black and yellow forms. In particular,
recent work carried out by Huang and Lambrecht [7] has
provided a more fundamental view of the phase equilibria
in CsSnI3, identifying the soft phonon modes which underpin
the transformations between them.

In the present work, we perform quasiharmonic lattice-
dynamics calculations to characterize the temperature depen-
dence of the properties of the four phases of CsSnI3, focusing
in particular on the form of the phonon dispersions and the rel-
ative Gibbs free energy. When mapping out the free energy as a
function of temperature based on the 0 K equilibrium structure,
the lattice vibrations are modeled as independent harmonic
oscillators, and the constant-volume (Helmholtz) free energy
is defined as a sum of the lattice energy and the (temperature-

dependent) vibrational contribution from the population of
the phonon energy levels [17]. However, variation in the
lattice volume due to thermal expansion/contraction leads to
changes in both the lattice energy and the phonon frequencies,
which causes a temperature dependence of the thermodynamic
potentials. These anharmonic effects, which are taken into
account in the quasiharmonic approximation (QHA), may
be required to reproduce the subtleties of the free-energy
landscape. The calculations also yield structural properties
as a function of temperature, giving a first-principles estimate
of the temperature dependence of the lattice volume, thermal-
expansion coefficient, and other thermoelastic properties.

II. QUASIHARMONIC APPROXIMATION

In statistical physics, the Helmoltz free energy, F , is defined
in terms of the canonical partition function, Z, by the so-called
bridge relation:

F = −kBT ln Z, (1)

where kB is the Boltzmann constant and T the temperature.
Z defines the partitioning of energy among the energy levels
associated with the degrees of freedom of the system [17,18],
and for a solid is given by:

Z(T ) = exp (−φ/kBT )
∏

q,ν

exp [−�ω(q,ν)/2kBT ]

1 − exp [−�ω(q,ν)/kBT ]
, (2)

where φ is the potential energy of the system, and the
product runs over vibrational modes ν and reciprocal-space
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wave vectors q, with the phonon occupation number for each
mode obtained from a Bose-Einstein distribution using the
characteristic oscillator frequency ω. [18,19]

The temperature-dependent Helmoltz free energy is hence
given by [20]:

F (V,T ) = φ + 1

2

∑

q,ν

�ω(q,ν)

+ kBT
∑

q,ν

ln {1 − exp [−�ω(q,ν/kBT )]} (3)

with � being the reduced Planck constant. The second term is
a sum of the modal contributions to the zero-point vibrational
energy, and the third term is the contribution of each mode
to the free energy due to thermal occupation of the phonon
energy levels.

Phonon frequencies are derived from the restoring force in
response to the displacement of ions by a small amplitude from
their equilibrium positions. The interatomic force constants
(IFCs) can either be computed from perturbation theory
(e.g., density-functional perturbation theory), or by perform-
ing force calculations on a series of symmetry-inequivalent
displaced structures and fitting the force/displacement curves
to a harmonic function. In the latter finite-displacement
(direct) method, the Parlinski-Li-Kawazoe supercell approach
is commonly employed [21,22] to capture the long-range
contributions to the IFCs between atoms in different crystal-
lographic unit cells, which are needed to accurately calculate
the frequencies of short-wavelength phonon modes [19].

In the harmonic model, the equilibrium distance between
atoms is independent of temperature. The anharmonic effects
needed to account for thermal expansion can be introduced
by the QHA, in which the thermal expansion of the crystal
lattice is obtained from the volume dependence of the phonon
frequencies. The evaluation of the equilibrium volume and
Gibbs free energy at a temperature T is obtained by minimising
the function F (V,T ) for a given (constant) pressure p [17,20]:

G(T ,p) = min
V

[F (V,T ) + pV ], (4)

where min
V

means that for each value of T and p, the function

is minimized with respect to volume.
To perform a QHA calculation, the phonon frequencies

are computed for a range of expansions and compressions
about the 0 K equilibrium volume, and the constant-volume
free energy for each calculation is evaluated as a function
of temperature. From this approach, the equilibrium volume,
bulk modulus, and Gibbs free energy can be obtained at
arbitrary temperatures by fitting the free energy as a function
of volume to an equation of state [23,24]. The temperature
dependence of various derived properties, e.g., volumetric
expansion coefficients and the mean Grüneisen parameter, are
then readily obtained.

The mode Grüneisen paramaters, γq,ν , quantify the change
in each phonon frequency with volume V through [25,26]:

γq,ν = − V

ωq,ν

∂ωq,ν

∂V
= −∂ ln ωq,ν

∂ ln V
. (5)

These are related to the temperature-dependent mean
Grüneisen parameter by:

γ =
∑

q,ν

Cq,νγq,ν

CV
, (6)

where CV is the constant-volume heat capacity, and Cq,ν are
the contributions from individual modes:

Cq,ν = �ωq,ν

∂n(T ,ωq,ν)

∂T
(7)

with n(T ,ωq,ν) being the phonon occupation number.
Within the QHA, the mode Grüneisen parameter [and,

by Eq. (6), the mean Grüneisen parameter] is related to the
volumetric thermal expansion coefficient, αV, according to:

αV = ∂ ln V

∂T
= 1

BV

∑

q,ν

Cq,νγq,ν, (8)

where B is the (temperature-dependent) bulk modulus.
When the mean Grüneisen parameter γ is negative, αV will

likewise be negative, indicating negative thermal expansion
(NTE), i.e., a reduction in volume upon heating [25,27,28].
NTE behavior in bulk systems has been linked to a number
of microscopic mechanisms, including, among others, fer-
roelectric, magnetostrictive, and displacive phase transitions,
low-frequency phonon modes and rigid-unit modes [27].

III. COMPUTATIONAL METHODOLOGY

Electronic-structure calculations were performed within
the density-functional theory (DFT) [29,30] framework, as
implemented in the Vienna Ab initio Simulation Package
(VASP) code [31–33]. The semilocal generalized-gradient
approximation functional with the Perdew-Burke-Ernzerhof
parametrization revised for solids (PBEsol) [34,35] was
employed for all the calculations. Projector augmented-wave
(PAW) [36,37] pseudopotentials were used to treat semi-core
electronic states, with the Cs[5s25p66s1], I[5s25p5] and
Sn[5s25p2] electrons being treated as valence states.

The starting point for our calculations was a full structural
relaxation of the four phases, performed with a plane-wave
kinetic-energy cutoff of 800 eV. Such a high cutoff was
found necessary to converge the phonon dispersion curves
(see Appendix A). The Brillouin zone (BZ) was sampled with
	-centered Monkhorst-Pack meshes [38] with subdivisions of
Bα: 8×8×8; Bβ: 8×8×9; Bγ : 6×5×6; and Y: 4×6×3.

Equilibrium volumes, lattice parameters, and bulk moduli
were determined by fitting energy-volume curves to the Birch-
Murnaghan equation of state [23,39] (Table I). The lattice
parameters obtained in the present calculations are slightly
underestimated with respect to the experimental data, which,
assuming positive thermal expansion, is expected, given that
these are 0 K values, whereas the experimental parameters are
recorded at finite temperature [19]. The Sn-I and Cs-I bond
lengths in the optimized structures are tabulated in Table II.

We also calculated the heats of formation of the four
phases of CsSnI3 with respect to the constituent elements in
their standard states Table III; additional electronic-structure
calculations were therefore carried out on the published crystal
structures of Cs (Im3m), Sn (I41/amd), and I (Cmca) [40],
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TABLE I. Equilibrium volumes, lattice parameters, and bulk moduli of the four different polymorphs of CsSnI3, determined by fitting to the
Birch-Murnaghan equation of state [23,39]. Experimental values obtained from Ref. [1] are given in parentheses. Experimental measurements
of B0 were not available for the Bα, Bβ, and Y phases for comparison.

V (Å3) a0, b0, c0 (Å) B0 (GPa)

Bα 230.39 a0 = 6.13 18.33
(a0 = 6.21, T = 500 K)

Bβ 453.03 a0 = 8.61, c0 = 6.11 17.45
(a0 = 8.72 c0 = 6.19, T = 380 K)

Bγ 897.84 a0 = 8.59, b0 = 12.24, c0 = 8.54 15.92
(a0 = 8.69, b0 = 12.38, c0 = 8.64, T = 300 K) (19.84, T = 300 K)

Y 854.65 a0 = 10.28, b0 = 4.73, c0 = 17.57 13.07
(a0 = 10.35, b0 = 4.76, c0 = 17.68, T = 300 K)

using the same pseudopotentials and plane-wave cutoff as
in the CsSnI3 calculations, in order to obtain reference
total energies. k-point convergence tests were performed for
all three systems, which indicated 	-centered meshes with
26×26×26, 32×32×34, and 16×14×16 subdivisions for Cs,
Sn, and I, respectively, to be suitable.

Lattice-dynamics calculations were carried out using the
supercell finite-displacement method implemented in the
PHONOPY package [41,42], with VASP used as the force-
constant calculator [22]. Force evaluations were performed
on 2×2×2 supercells using reduced k-point sampling meshes
of 4×4×4, 4×4×5, 3×2×3, and 2×4×2 for the Bα, Bβ,
Bγ , and Y phases, respectively. The phonon frequencies were
sampled on an interpolated 48×48×48 q-point mesh for the
two high-temperature phases; due to the lower symmetries
and larger primitive cells of the orthorhombic structures, the
phonon frequencies for these were sampled on a 24×24×24
q-point mesh.

In order to correct for the long-range Coulomb interaction,
which leads to a frequency splitting of the longitudinal and
transverse optic modes at the zone center (LO-TO splitting),
a nonanalytical correction, based on the Born effective-
charge tensors and the electronic-polarization component
of the macroscopic static dielectric tensor, was applied
when computing the phonon band dispersions [43]. These
quantities were obtained by employing the density-functional
perturbation theory routines implemented in VASP [44], with
calculations being performed on single unit cells of the
four structures. Convergence of these quantities required
increasing the k-point mesh to 16×16×16, 10×10×11,
10×9×10, and 6×8×5 for the Bα, Bβ, Bγ , and Y phases,
respectively.

TABLE II. Unique bond lengths in the 0 K equilibrium structures
of the four different phases of CsSnI3. Values are given in Å.

Sn-I Cs-I

Bα 3.065 4.334
Bβ 3.088, 3.103 3.909, 4.272, 4.801
Bγ 3.115, 3.100, 3.107 3.847, 3.869, 3.930

4.075, 4.084
Y 3.165, 3.008, 3.199 3.908, 4.133, 3.969

3.326, 5.347, 5.249 3.834, 3.926, 3.855

IV. RESULTS AND DISCUSSION

A. Phase stability

To assess the relative enthalpic stabilities of the four phases,
we calculated the heat of formation of CsSnI3 with respect to
the constituent elements according to the following:


Hf = E
CsSnI3
tot − [

ECs
tot/atom + ESn

tot/atom + 3EI
tot/atom

]
, (9)

where E
CsSnI3
tot is the total energy (per formula unit) of the

different polymorphs of CsSnI3, and E
Cs/Sn/I
tot/atom is the total energy

per atom of the pure components in their standard states. The
calculated heats of formation are tabulated in Table III; we note
that neither experimental nor theoretical data was available for
comparison, and thus we were unable to compare our values
with other results.

The data in Table III suggest that the Y phase is enthalpically
the most stable, followed closely by the Bγ and then the Bβ

phases, whereas the cubic Bα phase is the least stable. This
trend is consistent with the temperature ordering of the phases,
and can be interpreted in terms of the relative sizes of the
ions. When the ionic radii do not allow for optimal cation-
halide bond lengths, it becomes energetically more favorable
to displace the caged ions from their cubic positions, leading
to the different distorted perovskite structures [45].

The Goldschmidt tolerance factor, t [46], for CsSnI3 has
been calculated to be 0.9 [7]. t is an indicator for the stability
and distortion of crystal structures based on Shannon ionic
radii [47], and since t < 1, it is expected that rotations would
occur in order to stabilize the A cations in the interstitial
environment, since the Sn-I cages are too big to accommodate
the Cs atoms with optimal bonding. This trend is consistent
with that found among the oxide perovskites, where the
systems undergo transitions to the Pnma space group [7].

TABLE III. Heats of formation of the four polymorphs of CsSnI3,
calculated from the 0 K equilibrium structures. Values are given in
eV per CsSnI3 unit.

Phase 
Hf

Bα −15.054
Bβ −15.089
Bγ −15.107
Y −15.108
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(a)

(b)

FIG. 2. (Color online) Free energy as a function of temperature
for the three black CsSnI3 polymorphs relative to the Y phase, which
is the lowest-energy structure at 0 K. Plots (a) and (b) show the
Helmoltz and Gibbs free energies, respectively. Energies are given
per CsSnI3 formula unit.

Within the harmonic approximation, the (Helmholtz) free
energy as a function of temperature can be obtained from
the phonon frequencies and lattice energy of the equilibrium
structure [Eq. (3)]. By accounting for changes in the phonon
frequencies due to variation in the lattice volume, the QHA
calculations yield the Gibbs free energy [Eq. (4)], which
is arguably more experimentally relevant. The temperature
dependence of the relative (equilibrium) Helmholtz and Gibbs
free energies of the four phases is compared in Fig. 2.

Both sets of data show a similar trend. At 0 K, the 1D
network (Y phase) is the most stable structure, with the Bγ

phase becoming favored at around 10 K. At 0 K, the cubic
structure has the highest energy of the perovskite phases, and
the Bγ the lowest; the energy of the Bβ phase is pinned
between these competing phases. The equilibrium Helmholtz
energies predict the cubic Bα phase to become stable at 300 K,
transitioning directly from the Bγ phase. The corresponding
transition temperature obtained from the Gibbs free energies is
shifted to 200 K, but the stability trend is similar, with the Bγ

structure remaining energetically close to the Bα phase up to
high temperatures. These results disagree qualitatively with the
electronic-structure calculations carried out by Yu et al. [2],

which suggested that the Bα structure can be deformed to
the Bβ state without any energy barrier. This highlights the
importance of taking into account contributions beyond the
lattice internal energy when assessing polymorph stability.

According to our results, the Bβ phase is never more
stable than the competing phases within the QHA. From the
Helmholtz free energy [Fig. 2(a)], there is energetic competi-
tion between the Bα, Bβ, and Y structures around 200 K, at
which the Bγ structure is the most stable. Above this tempera-
ture, the Bα phase lowers and the 1D crystal increases in energy
with respect to the tetragonal phase. On the other hand, the
Gibbs free energy [Fig. 2(b)] predicts that the tetragonal phase
is always higher in energy than the Y phase, and is consistently
higher in energy than all three competing phases above 100 K.

B. Temperature dependence of structural properties

The structural properties, as a function of tempera-
ture, obtained from the QHA are shown for each phase
in Fig. 3. These include the mean Grüneisen parameter,
γ (T ), the volumetric thermal-expansion coefficient, αV(T ),
the temperature-dependent bulk modulus, B(T ), and the
temperature-dependent volume (per formula unit), V (T ).

The thermal expansion of all three black phases shows a
similar trend [Fig. 3(b)], whereby the expansion coefficients
increase from 0 K before peaking at a low temperature and then
decreasing. The expansion of the Bγ and Bβ phases both peak
around 150 K, and remain positive at higher temperatures. On
the other hand, the Grüneisen parameter [Fig. 3(a)] of the Bα

phase shows a very sharp peak at low temperature and then
a notable decrease at high temperatures, becoming negative
at around 200 K; this correlates with a negative volumetric
thermal-expansion coefficient.

The temperature-induced volume changes in the black
perovskites are dependent on the stretching of the Sn-I bonds
and the tilting of the SnI6 octahedra. As all three structures
have a similar SnI6 octahedral framework, one may infer that
the octahedral cages remain largely ideal (i.e., undistorted),
and so the thermal expansion is accommodated primarily by
changes in the volume of the cage [48]. The thermal expansion
of the cubic phase is found to be smaller than that of the
lower-symmetry phases, which is consistent with theoretical
analysis performed on other centrosymmetric perovskites [48].

In contrast, the lower-dimensional Y crystal exhibits a
markedly different thermal-expansion trend to the black
perovskite structures [Fig. 3(b)]. We interpret this as being due
to the composition of the Y phase being better described by the
formula Cs2Sn2I6, where the edge-sharing octahedra condense
to form infinite one-dimensional double chains of Sn2I2−

6 ,
separated by the Cs cations, leading to a denser structure [1].

Figure 3(c) shows the temperature-dependent bulk moduli
of the four phases of CsSnI3. The bulk modulus of the
cubic phase shows an apparently remarkable increase with
temperature, yielding a very large value at 500 K when
compared to that obtained at the 0 K equilibrium volume
[B(500K) = 418.90 GPa and B0 = 18.33 GPa, respectively;
Tables I and V]. This is clearly a spurious result, and, on
investigation, appears to be an artifact of the fitting of the
free-energy versus volume curves to the Vinet-Rose equation
of state [24] for this phase [see Appendix C, Fig. 8(a)]. There
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FIG. 3. (Color online) Structural properties of the four phases of CsSnI3 as a function of temperature within the quasiharmonic
approximation. (a) Grüneisen parameter, γ (T); (b) volumetric-expansion coefficient, αV(T); (c) bulk modulus, B(T ); and (d) volume per
formula unit, V (T ).

is a disproportionate distortion of the high-temperature free
energy of the expanded structures due to the presence of
the imaginary modes in the phonon density of states (see
Sec. IV C).

The Bβ and Bγ phases have similar bulk moduli up to
∼180 K, above which the bulk modulus of the Bγ phase
increases above that of the tetragonal structure. The Y structure
has the lowest bulk modulus throughout the temperature range
studied. This low value is consistent with the large number
of degrees of freedom, which make it a highly compressible

structure. This is likewise also reflected in the volume
expansion [Fig. 3(d)] when the temperature is increased.

Table IV gives the calculated properties of the four
structures of CsSnI3 at the temperatures quoted in Ref. [1]. The
lattice parameters are compared to values obtained from this
experimental study, and are notably closer to experiment than
those obtained from the 0 K equilibrium-volume calculations
(Table I). We note that this is despite the apparent errors in the
high-temperature bulk moduli of the cubic (Bα) phase noted
previously.

TABLE IV. Structural properties of the different phases of CsSnI3 at the temperatures quoted in Ref. [1] (values are shown in parentheses),
calculated within the quasiharmonic approximation. γ refers to the Grüneisen parameter, and αV is the volumetric thermal expansion coefficient.

V (Å3) a0, b0, c0 (Å) BT (GPa) γ αV (106/K)

Bα (500 K) 233.78 a0 = 6.16 418.90 −1.06 −2.12
(a0 = 6.21, T = 500 K)

Bβ (380 K) 474.24 a0 = 8.74, c0 = 6.21 23.68 2.25 75.99
(a0 = 8.72, c0 = 6.19, T = 380 K)

Bγ (300 K) 949.29 a0 = 8.89, b0 = 12.41, c0 = 8.60 26.59 3.54 115.81
(a0 = 8.69, b0 = 12.38, c0 = 8.64,, T = 300 K) (19.84, T = 300 K)

Y (300 K) 890.93 a0 = 10.42, b0 = 4.80, c0 = 17.57 9.85 1.67 156.78
(a0 = 10.35, b0 = 4.76, c0 = 17.68, T = 300 K)
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(a) (b)

(c) (d)

FIG. 4. (Color online) Phonon dispersions and densities of states of the four different polymorphs of CsSnI3, plotted for various lattice
temperatures obtained from the quasiharmonic approximation (the corresponding structural parameters are listed in Table V): (a) Bα, (b) Bβ,
(c) Bγ , and (d) Y. The unit cell of the Bα phase contains five atoms (Z = 1), whereas the Bβ unit cell is twice as large (10 atoms; Z = 2), and
the the two orthorhombic structures both contain 20 atoms in the primitive cell (Z = 4).

C. Phonon density of states and band dispersion

Within the harmonic approximation, Huang and Lambrecht
observed imaginary phonon modes in the equilibrium band
structures of both high-temperature black phases [7]. Imag-
inary modes were not observed in the orthorhombic phases
(Bγ and Y), indicating that the orthorhombic structures are
dynamically stable at 0 K. From the temperature-dependent
lattice volumes obtained in the present quasiharmonic calcula-
tions, we calculated the phonon band structures and densities
of states as a function of temperature (Fig. 4; the corresponding
structural parameters are listed in TableV).

As in Ref. [7], we also observe soft modes in the dispersions
of the Bα and Bβ phases. In the former, the soft modes occur
at the zone boundaries [q vectors M and R; Fig. 4(a)]. This
would correspond to a phase instability due mostly to rotations
of the octahedra about the crystallographic c axis [26]. From
the partial phonon density of states (PDOS) of the equilibrium
structure (Fig. 5), it can be seen that the main contribution to the
soft modes are distortions of the perovskite cage (Sn-I), which
is again consistent with the findings in Refs. [1,7]. Moreover,
one must note that these zone-boundary imaginary modes do

not disappear at high temperatures (above 425 K), indicating
that this structure is not dynamically stable at any of the lattice
temperatures studied here.

At ∼29 K, a new optic-mode instability emerges at the 	

point, corresponding to a ferroelectric phase transition, which
would lead to a higher degree of disorder in the system [26].
This is similar behavior to that observed, for example, in
SrTiO3, where the ferroelectric phase transition occurs at low
temperatures (∼32 K) [26]. From the low-temperature PDOS
curves [Fig. 6(a)], this disorder contribution appears to be due
to the vibrations of the Cs atoms about their mean positions,
which become more prominent with increasing temperature.
The “rattling” motion of the Cs atom would cause the loss of
the center of symmetry in the unit cell.

In support of these conclusions, Chung et al. [1] found
that at 500 K the coordination environment and anisotropic
displacement parameters (ADPs) of the Cs atoms were
unusually high, and also that the ADPs of the I atoms indicated
large thermal vibrations perpendicular to the Sn-I bonds, which
is consistent with the distortion of the cage.

From the phonon band dispersion of the Bβ phase
[Fig. 4(b)], the soft modes cross the whole of the BZ,
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TABLE V. Lattice parameters of the four phases of CsSnI3 at the QHA lattice temperatures at which the phonon DOS and band dispersions
in Fig. 4 were obtained.

T (K) a0, b0, c0 (Å) T (K) a0, b0, c0 (Å)

Bα 6 a0 = 6.143 Bβ 0 a0 = 8.622,b0 = 6.122
100 a0 = 6.161 109 a0 = 8.652,b0 = 6.144
200 a0 = 6.162 222 a0 = 8.695,b0 = 6.174
300 a0 = 6.161 300 a0 = 8.720,b0 = 6.192
400 a0 = 6.161 400 a0 = 8.745,b0 = 6.210
500 a0 = 6.160 500 a0 = 8.762,b0 = 6.222

Bγ 0 a0 = 8.609,b0 = 12.264,c0 = 8.559 Y 0 a0 = 10.297,b0 = 4.739,c0 = 17.595
74 a0 = 8.633,b0 = 12.299,c0 = 8.583 113 a0 = 10.333,b0 = 4.755,c0 = 17.655
223 a0 = 8.719,b0 = 12.421,c0 = 8.669 222 a0 = 10.384,b0 = 4.779,c0 = 17.743
300 a0 = 8.893,b0 = 12.410,c0 = 8.602 320 a0 = 10.436,b0 = 4.803,c0 = 17.831
437 a0 = 8.762,b0 = 12.482,c0 = 8.712 407 a0 = 10.487,b0 = 4.826,c0 = 17.919
500 a0 = 8.792,b0 = 12.525,c0 = 8.741 486 a0 = 10.836,b0 = 4.749,c0 = 17.883

including the zone center. These soft modes persist across the
temperature range studied, similar to those in the Bα phase.

(a)

(b)

FIG. 5. (Color online) Partial phonon density of states of the Bα

(a) and Bβ (b) phases of CsSnI3, calculated at the 0 K equilibrium
lattice parameters. It can be seen that distortions of the Sn-I cage are
the major contributor to the negative part of the DOS in the Bα phase,
whereas the imaginary modes in the Bβ phase are predominantly due
to the motion of the caged Cs ion.

In addition, a second branch of imaginary frequencies are
visible at the q vector Z. This is in contrast to the results in
Ref. [7], where only one branch of soft modes was observed,
with discontinuities along the segment M-X. We found that

(a)

(b)

FIG. 6. (Color online) Phonon band dispersion (a) and partial
density of states (b) of the Bα polymorph of CsSnI3, at low
temperatures. An imaginary optical mode emerges at the 	 point
as the temperature increases, which appears to be due predominantly
to the “rattling” of the Cs atom within the perovskite cage.
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this discrepancy may be due to the different plane-wave cutoff
employed in these and the other calculations (see Appendix A).
In the PDOS in Fig. 5(b), the main contribution to the negative
modes is the rattling of the Cs atom, with the negative-
frequency part of the PDOS having a much larger amplitude on
Cs than that in the Bα phase [1,7]. This effect is consistent with
the instability of this system evident in the Gibbs free energy
(Fig. 2), and suggests that, on cooling, structural transitions
involving movement of the Cs atoms would occur [26].

The two room-temperature structures (Bγ and Y) do not
show imaginary phonons over any of the temperature ranges
studied in this work [Figs. 4(c) and 4(d)]. On cooling to the
Bγ phase, the Cs atoms order and the structure is stable in the
orthorhombic symmetry group. In this system, near 500 K a
mode at the U q vector appears to undergo substantial soften-
ing with respect to lower-temperature structures, whereas the
Y phase does not appear to show similar phenomena.

D. Discussion

We have obtained good qualitative agreement with other
reports [1,7] in predicting the free-energy ordering of the
different polymorphs of CsSnI3, and the finite-temperature
lattice parameters/cell volumes obtained from the QHA appear
to be in better agreement with experimental data than those of
the equilibrium (athermal) structure.

The transition temperatures estimated within the harmonic
and quasiharmonic approximations are both relatively poor
compared to the experimental data in Ref. [1]; for example, the
transition between the Y and high-temperature cubic phases
is expected to occur above 425 K, whereas the Helmoltz free-
energy comparison predicts this to take place below 200 K,
and the Gibbs free energies predict a transition slightly above
100 K (Fig. 2).

As the Bβ phase is not stable on the QHA free-energy
landscape, these calculations predict that the Bα structure
should transition directly to the Bγ phase. That said, the
discrepancies between the calculated and experimentally
observed transition temperatures amount to subtle energy
differences, and given the apparent instability of the two
high-temperature phases evident from their phonon disper-
sions, it is likely that these are observed as crystallographic
averages of equivalent lower-symmetry structures. In this view,
the transition temperatures observed experimentally would
correspond to those at which sufficient thermal energy was
available to allow these low-lying potential-energy maxima to
be explored frequently enough to be observable in a diffraction
experiment. Indeed, the Helmoltz free energy suggests that the
Bα and Bγ structures are very close in energy at temperatures
above ∼150 K, with the energy difference between them
(∼0.02 eV) being comparable to kBT between 180 and
200 K. Similarly, the Gibbs energy difference between Bα

and Bγ is around 0.01 eV between 130 and 160 K, and is
roughly constant (0.02 eV) from (∼350 K) to 700 K.

It must be noted that a significant shortcoming of the
present investigation is the treatment of the imaginary modes
in the two high-temperature polymorphs. A proper physical
description of these systems, e.g., using self-consistent phonon
theory, should provide renormalized frequencies for the soft
(imaginary) modes. In the present calculations, however, the

imaginary modes are excluded from the partition function
when computing thermodynamic properties, whereas renor-
malization could produce additional low-frequency modes,
which contribute significantly to the free energy. However, on
inspection of the bands at explicitly calculated high-symmetry
q points, we found that in many cases the imaginary modes
were doubly or triply degenerate, meaning that an involved
renormalization scheme would need to be employed, which is
beyond the scope of this study. Aside from this approximation,
it is also important to note that the QHA is only considered to
be valid up to 2

3 of the melting temperature [19], above which
higher-order anharmonic effects become prominent. We would
thus expect the high-temperature properties obtained from the
QHA to be in error to some extent, even given an improved
scheme for renormalizing the imaginary modes.

V. CONCLUSIONS

We have performed lattice-dynamics calculations within
the quasiharmonic approximation on the four polymorphs of
CsSnI3. Our calculated structural properties suggest that, on
balance, the finite-temperature lattice parameters provide a
better match to experimental data than those of the equilib-
rium structure, despite potential issues with the treatment of

FIG. 7. (Color online) Phonon band dispersions of the Bβ phase
of CsSnI3 calculated with plane-wave cutoffs of 500 eV (electroni-
cally converged value; top) and 800 eV (bottom).
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(a) (b)

(c) (d)

FIG. 8. (Color online) Helmoltz free-energy equation-of-state fits for the four CsSnI3 polymorphs at different lattice temperatures: (a) Bα,
(b) Bβ, (c) Bγ , and (d) Y. Note that the free energies are given per unit cell, and not per formula unit.

imaginary modes during the calculation of free energies. On
the other hand, the predicted phase-transition temperatures
do not agree quantitatively with experimental measurements,
and further studies are required to pinpoint the origin of
these discrepancies. From both the harmonic Helmholtz and
quasiharmonic Gibbs free energies, we conclude that the Bβ

phase is not stable between 0 and ∼500 K with respect to com-
peting phases. This is reflected in the calculated temperature-
dependent phonon band dispersions, in which a branch of neg-
ative modes is consistently observed across the entire Brillouin
zone, associated with the “rattling” of the Cs atom within the
perovskite cage. The high-symmetry Bα phase also exhibits
imaginary phonon modes throughout the temperature range
studied, which appear to arise from motion of the Sn-I frame-
work, and also a certain degree of disorder in the Cs atom posi-
tion, evident from a zone-center ferroelectric instability which
emerges at temperatures just above 0 K. On the other hand, both
the ground-state phases are found to be structurally and dy-
namically stable, and do not show negative frequencies in their
phonon dispersions up to 500 K. The significance of these find-
ings is that the Bα and Bβ structures may be crystallographic
averages over low-frequency modes in the lower-symmetry
phases leading to thermal hopping between equivalent minima,
and this is a point that merits further experimental and
theoretical investigation. Similar behavior is expected for other
tin and lead compounds in the perovskite crystal structure.
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APPENDIX A: CONVERGENCE OF THE PHONON
DISPERSIONS WITH RESPECT TO THE PLANE-WAVE

CUT-OFF ENERGY

When carrying out DFT calculations, convergence testing
is typically done based on criteria such as the total energy
or stress. In the present work, we found that whereas
moderate plane-wave cut-off energies (500 and 600 eV for
the high-temperature and ground-state phases, respectively)
were sufficient to converge the total energies and stress, a
higher cutoff of 800 eV was needed to converge the phonon
frequencies, in particular to eliminate artifacts at long q-vector
regions of the phonon dispersion.
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Initial harmonic-phonon calculations carried out with the
lower plane-wave cutoffs gave rise to unphysical negative
acoustic modes at the 	 point in calculations on the Bγ phase,
indicating numerical noise in the force constants (we note that
Phonopy does not symmetrize force constants by default, i.e.
enforcing the acoustic-sum rule, as is a standard procedure in
most codes). This issue was rectified by using a higher cutoff.

In addition, for the Bβ phase we observed differences in the
low-frequency phonon modes, most notably the dispersion of
the imaginary modes across the BZ, with different cutoffs
(Fig. 7). When the lower cutoff was employed, negative
frequencies were observed at every high-symmetry q vector
bar the segment X-M; this is similar to the dispersion reported
in Ref. [7]. However, where the energy cutoff was increased
to 800 eV, the branch becomes negative through this segment,
and a second negative-frequency branch emerges at Z.

APPENDIX B: CALCULATED
TEMPERATURE-DEPENDENT LATTICE PARAMETERS

Table V lists the calculated lattice parameters for the
different QHA lattice temperatures for which the phonon

densities of states and band dispersions are shown in
Fig. 4.

APPENDIX C: FREE-ENERGY EQUATIONS OF STATE

In Sec. IV B, apparent artifacts were observed in the
calculated high-temperature bulk moduli, in particular those
of the cubic Bα phase. On investigation, we found that this
was most likely due to anomalies in the high-temperature
free-energy equations of state [Fig. 8(a)], in particular a
disproportionately sharp increase in the free energy under
expansion. Since this phenomenon is not as prominent at low
temperature, it is likely due to the treatment of imaginary
modes in the present calculations (see Sec. IV D). It is notable
that a similar phenomenon is also observed for the ground-state
Bγ phase, which we found is due to the appearance of soft
modes under lattice expansions corresponding to very high
temperatures on the QHA free-energy surface. From the results
in Fig. 3(a), the calculated bulk moduli appear to be more
sensitive to these issues than the lattice volumes, which, when
compared to experimental data, appear to be reasonable for
the high-temperature structures.
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3.2 Comments to the Manuscript Phase Stability and Trans-

formations in the Halide Perovskite CsSnI3

• Page 144107-3, paragraph 4: Rephrasing sentence ’To perform a QHA calculation, the

free energies are computed for a range of expansions and compressions about the equi-

librium volume (the ion positions are relaxed for all the volumes). The free energies are

then fitted, as a function of temperature, to the Vinet-Rose equation of state [102, 83].

From this approach, the equilibrium volume, bulk modulus, and Gibbs free energy can

be obtained at arbitrary temperatures.’

• Page 144107-5, paragraph 2: Remove sentence ’This highlights the importance of taking

into account contributions beyond the lattice internal energy when assessing polymorph

stability.’

• Page 144107-6, paragraph 1: Remove sentence ’There is a disproportionate distortion of

the high-temperature free energy of the expanded strauctures due to the presence of the

imaginary modes in the phonon density of states’

• Page 144107-7, paragraph 1: Rephrasing sentence ’Within the harmonic approximation,

Huang and Lambrecht [7] observed imaginary modes in both band structures of the cubic

and tetragonal phases [7].

• Page 144107-7, paragraph 2: Rephrasing sentence ’Moreover, one must note that these

zone-boundary imaginary modes do not disappear above the expected transition temper-

ature (425 K). This indicates that the cubic structure in not dynamically stable at any

of the studied temperatures.’

• Page 144107-9, paragraph 3: Rephrasing sentence ’(..) experimental data in Ref. [1].

The transition between the ground-state Y phase and the high-temperature cubic phase

is expected to occur above 425 K. From the harmonic approximation (Helmholtz free

energy) the transition takes place below 200 K, while within the quasi-harmonic approx-

imation (Gibbs free energy) the phase transition is predicted to occur slightly above 100

K (Fig. 2).

• Page 144107-9, paragraph 4: Grammer correction of ’Helmholtz’.

• Page 144107-9, paragraph 5: Rephrasing sentence ’(..) imaginary modes are not consid-

ered in the evaluation of the partition function when computing thermodynamic proper-

ties, (..).’
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3.3 Symmetry-Mode Analysis

Based on group-theoretical analysis it is possible to define the group-subgroup relationships

among the fifteen possible space-groups resulting from octahedral tilting [101]. The majority

of low-symmetry perovskite phases can be derived from the high-symmetry structure by rigid

tilting of the octahedral units around their symmetry axes. The structural distortions that re-

late both structures can be qualified as a symmetry-breaking distortion [103]. The equilibrium

position of the Cs cation can therefore be determined by the positions and tilting of the SnI6

octahedra for a given set of bond angles.

By employing symmetry-mode analysis, it is possible to fully describe the distorted ground-

state Pnma structure by decomposing the structural distortion into contributions from lattice

modes with different symmetries. These are characterised by the irreducible representations

(ir.reps.) of the centrosymmetric Pm3m structure (the reference structure is also known as the

aristotype structure). The analysis is performed using the AMPLIMODES programme [104]

of the Bilbao Crystallographic Server, and is useful to determine the driving mechanisms of

the structural phase transitions and the fundamental instabilities at the origin of the distorted

phases.

By providing the high- and low- symmetry structures, the software package AMPLIMODES

[104] performs atom mappings (pairings) by identifying the atoms in the low symmetry struc-

ture that correspond to the asymetric unit of the reference structure, and therefore computing

the atomic displacements that relates both structures. With this approach, it is then possible

to define a basis of symmetry-adapted modes and calculate the amplitudes and polarisation

vectors from the high-symmetry to the distorted structure [104, 103, 105].

Table 3.1: Summary of the basis modes in the distortion of CsSnI3, from the Pm3m to the
Pnma phase, distributed per type of Wyckoff position (WP). Numbers in parenthesis indicate
the number of modes for each ir.rep..

Atoms WP Modes

I3 3c R−4 (1), R−5 (1), X−5 (1), M+
2 (1), M+

3 (1)
Cs1 1a R−4 (1), X−5 (1)

Tab. 3.1 presents a summary of the basis of symmetry modes and respective ir.reps. which

describe the atomic displacements in each Wycoff orbit of the high symmetry phase [103].

There are a total number of seven basis modes, one corresponding to each of the three ir.rep.

modes: R−5 , M+
2 and M+

3 , and two to ir.reps R−4 and X−5 . The single modes of R−5 , M+
2 and

M+
3 only correspond to displacements of the I3 atom, wheres the remaining two also refer to

displacements of the Cs cation. The atomic displacements of all atoms, multiplied by a given

amplitude, yields the actual distortion of the low-symmetry structure [103].
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Table 3.2: Mode decomposition, indicating the amplitudes (Å) of each ir.rep. distortion
component.

k-vector Ir.rep. Direction Isotropy Subgroup Dimension Amplitude

(1
2 ,1

2 ,1
2 ) R−4 (0,a,a) Imma (74) 2 0.4193

(1
2 ,1

2 ,1
2 ) R−5 (0,a,−a) Imma (74) 1 1.4885

(0,1
2 ,0 ) X−5 (0,0,a),(0,0,0) Cmcm (63) 2 1.1791

(1
2 ,1

2 ,0) M+
2 (a,0,0) P4/mbm (127) 1 1.7058

(1
2 ,1

2 ,0) M+
3 (a,0,0) P4/mbm (127) 1 0.0706

Tab. 3.2 summarises the mode decomposition, which lists the ir.reps involved in the Pm3m

→ Pnma distortion and the absolute amplitudes of the symmetry components of the global

distortion. From left to right, the table lists 1) the k wave-vector for each ir.rep. present in

the distortion; 2) the restricted direction of the ir.rep. space; 3) the isotropy sub-group; 4)

the dimension of the respective space-group (number of orthonormal basis-modes); and 5) the

amplitudes of the symmetry components. By analysing Tab. 3.1, one may observe that the

modes with highest amplitudes are the M+
2 , R−5 and X−5 modes, with values of QM+

2
= 1.71 Å,

QR−5
= 1.49 Å and QX−5

= 1.18 Å, respectively. These modes are therefore major contributors

to the distortion to the low symmetry phase. By analysing Figs. 3-1 and 3-2, it is possible

to deduce that the M+
2 and R−5 ir.reps correspond to in-phase and out-of-phase rotations of

the perovskite cage, respectively, whereas ir.rep. X−5 corresponds to the rattling of the Cs ion

inside the cage.

Fig. 3-3 shows the five ir.rep. distortion components that contribute to the symmetry-

breaking during the Pm3m → Pnma distortion. By performing the analysis of structure

relations between two phases of the same compound with group-subgroup related space groups,

it is possible to construct family trees of homeotypic crystal structures (Bärnighausen trees)

[105]. From this analysis one may then perform the decomposition of the global distortion into

symmetry-mode contributions, separating the correlated atomic displacements into the main

modes which contribute the most for the phase transition [105].

It can be observed that a single ir.rep. distortion component is not sufficient to allow

for the full structural distortion from the reference cubic structure to the ground-state Pnma

structure. In fact, it is a combination of at least three distortions with significant amplitudes

(M+
2 , R−5 and X−5 ) that cause the symmetry-breaking. Each primary mode condenses at

different temperatures, which would correspond to two distinct phase transitions (expected

transition sequence of Pm3m → P4/mbm → Pnma). These results are consistent with what

has been discussed in Refs. [99, 16] and in the previous section.

Fig. 3-4 represents the potential energy surface along each distortion mode (frozen mode).

The end-point u = 0 corresponds to the high-symmetry Pm3m structure and u = 1 represents
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Figure 3-1: Illustration of the different distortion components describing the Pm3m→ Pnma
transition in CsSnI3. The directions of the atomic displacements are shown by arrows. The
lengths of the arrows do not correspond to the amplitude distortions listed in Tab. 3.2, but
have been increased to clearly show the atomic displacements. The I ions are represented in
purple and the Cs ion in green.

Figure 3-2: Decomposition of the structural distortion from Pm3m → Pnma into contribu-
tions from lattice modes with different symmetries. The distorted structure derives from the
high-symmetry structure through three frozen distortions, M+

2 , R−5 and X−5 . The I ions are
shown in purple and the Cs in green.
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Figure 3-3: Bärnighausen tree for the group-subgroup relationship between the cubic aris-
totype and Pnma ground-state CsSnI3 structures. The ir.rep. labels indicate the distor-
tion components and related isotropy group that contribute to the symmetry-breaking of
Pm3m → Pnma. The labels M+

2 , M+
3 , R−4 , R−5 and X−5 correspond to the wave-vectors

in the Brillouin zone listed in Tab. 3.2, for each symmetry mode. The graph was obtained
using the SYMMODES software [11, 12].
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Figure 3-4: Potential energy surface along each distortion mode, with u = 0 being the
centrosymmetric cubic structure and u = 1 the distortion structure corresponding to the
isotropy sub-group of the frozen mode. All the five distortion modes contribute to the Pnma
distortion, although the most significant are the M+

2 , R−5 and X−5 .

the distortion corresponding to the isotropy sub-group of the respective frozen mode (i.e.:

u = 1 for the M+
2 corresponds to the P4/mbm sub-group). The sum of all the five different

u = 1 end-points will agree with the ground-state Pnma symmetry. It can be observed that the

energy lowers considerably along the M+
2 and R−5 modes, which means that these distortions

are mainly responsible for the symmetry-lowering to the Pnma phase. This corresponds to

what was discussed above, and to these modes contributing with more weight to the distortion

(QM+
2

= 1.71 Å and QR−5
= 1.49 Å). The X−5 mode, which refers to the rattling of the Cs

atom, produces an increase in energy when the frozen distortion occurs. In combination with

the other distortions of the surrounding cage the Cs movement leads to an averaged reduction

in energy of the CsSnI3 system.
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Chapter 4

Germanium Telluride (GeTe)

(...)what would be the use of studying physics if the mysteries were not the most important

things to investigate.

Richard P. Feynman

GeTe is a typical Ferroelectric Rashba Semi-Conductor (FERSC), displaying a ground-state

ferroelectric polar structure with spin-orbit effects, that give rise to the Rashba splitting of

the electronic bands. This material is quite intriguing since it does not fall into the classes of

conventional ferroelectrics. The polarisation in GeTe persists with the thickness of the order

of several nanometers, where it is even possible to reverse the orientation of the polarisation

by swapping of short and long Ge-Te bonds in the polar structure [106].

GeTe exhibits a high-temperature cubic rocksalt phase and a low-temperature ferroelectric

rhombohedral phase. The phase-transition between the two phases occurs between 625-705

K [107, 108, 109]. To study the nature of the structural phase transition, we have carried

out lattice dynamics calculations. We used the quasi-harmonic approximation, to model the

temperature dependence of the properties and to obtain the free energies and phonon disper-

sions of the two phases. These calculations revealed that the disorder is not static, and that

the local symmetry breaking would be caused by the displacement of the cation, which easily

transitions back and forth between two local minima, corresponding to the R3m structure.

From a microscopic point of view, the application of relativistic many-body perturbation

theory may allow for a more complete understanding of the electronic properties of the system,

enabling the study of the spin-electronic phenomena through the distortion pathway. From the

conclusions drawn from the lattice dynamics, one would also assume that the Rashba-splitting

is dynamical, since the local symmetry breaking would drive the splitting of the spin-bands.

Similar conclusions also apply to the crystal-field splitting. These results are consistent with

experimental evidence that the transition between the two phases in GeTe involves a type of

order-disorder transition of distorted units and is not displacive.
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To analyse the mechanism of ferroelectric transitions, one needs to integrate interpretations

from a macroscopic perspective, such as phenomenological Landau theories, to address the

issue of hysteresis behaviour. We have also carried this out, by employing the theoretical

methodology reported in Ref. [91], where the electric equation of state has been implemented,

making it possible to study the evolution of the order parameter (polarisation) through the

paraelectric-to-ferrolectric phase transition.

The first part of the work consists of a detailed discussion of the phase transition, from the

paraelectric to ferroelectric structure, and the variation of the Rashba effect and crystal-field

splitting according to the distortion path. The second part discusses the effective masses of the

band edges with the Rashba-splitting, the dielectric constants and the Born-effective charges.

The third part concludes with the application of the Landau free energy (electric equation of

state) to probe the thermodynamics of the phase transition in GeTe.

4.1 Lattice Dynamics of the Rashba Effect in GeTe

The paper that follows details the work carried out mostly during the second year of

the PhD, and some part of the third year. For this work, knowledge of lattice dynamics

acquired during the first year of the PhD was applied to study the phase transition of GeTe.

Since interest was mostly considered for the ground-state phase, which exhibits ferroelectric

properties and the Rashba-splitting, more deep understanding of respective properties were

required. For such, assimilating skills based on many-body perturbation methods were essential

in order to calculate the relativistic band structures, and other properties derived from these

effects. This phase was carried out in collaboration with researchers from King’s College of

London who provided the preliminary support for using the Questaal code to perform QSGW

calculations.
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Abstract
At room temperature, GeTe adopts a polar α-phase (R3m), but transitions to a centrosymmetric rocksalt β-phase (Fm3̄m)

above 670 K. The material is an example of a ferroelectric Rashba semiconductor (FERSC), where the combination of lattice
polarization and spin-orbit coupling results in a spin splitting at the valence- and conduction-band extrema. We probe how these
effects evolve through the α to β phase transition using a combination of first-principles lattice-dynamics and electronic-structure
techniques. The quasi-harmonic approximation (QHA) is used to explore the temperature dependence of the structure and
properties, with explicit mapping of the anharmonic potential-energy surface used to explore the double-well phonon instability
associated with the β phase. The magnitude of the Rashba splitting is quantified using all-electron relativistic quasi-particle
self-consistent GW (QSGW ) theory. While the change in spontaneous polarization shows a quadratic relationship to the
lattice distortion, the Rashba splitting shows a more complex response. We further predict that β-GeTe may exhibit a dynamic
Rashba effect due to local symmetry-breaking distortions at high temperature.

I. INTRODUCTION

Ferroelectric materials usually undergo a phase transi-
tion from a high-temperature paraelectric phase to a low-
temperature polar phase. The emergence of spontaneous
polarization is a consequence of the symmetry-breaking
structural transition that takes place at the transition
temperature, TC.

The discovery of novel physical properties in materials
science is often driven by the goal of finding materials
that couple multiple functionalities (i.e. are multifunc-
tional), which can provide opportunities for new and im-
proved technological applications. A good example are
the subset of ferroelectrics materials identified as ferro-
electric Rashba semiconductors (FERSC).1 These simul-
taneously display spontaneous polarization (ferroelectric-
ity) and spin-orbit coupling (SOC) effects, and the re-
sulting relativistic electronic structure can display the
Rashba effect - a momentum-dependent splitting of spin
bands.

GeTe is a prototypical FERSC material. It is simple
in structure,1 with only two atoms in the primitive unit
cells of both the low-temperature α (R3m) and high-
temperature β (Fm3̄m) phases. The α and β phases are
linked by a displacement of the Ge atom by 0.02 Å along
the < 111 > while retaining the cubic cell parameters,
which removes the center of symmetry and allows for
spontaneous polarization. The phase transition occurs
around 625–705 K.2–4

Although the ferroelectric phase of GeTe is well charac-
terized, the paraelectric-to-ferroelectric phase transition
is not fully understood. In particular, different studies
question whether the transition is displacive or order-
disorder in nature, the answer to which relies on the bal-
ance between the dynamics of the phase transition and
the role of anharmonic (soft) phonon modes.5 While for
displacive phase transitions the behaviour of the crystal

is well described within the soft-mode theory,41 with the
transition involving small symmetry-breaking displace-
ments; order-disorder transitions are mostly related to
ions hopping between sites that differ from the high-
symmetry sites, and the transition involves ordering of
all the ions.41 Several studies agree that the phase tran-
sition of GeTe is displacive, including the analysis of
neutron-diffraction data, which shows a temperature-
induced volume contraction at the phase transition,6,7,
and Raman spectroscopy, which shows a softening of the
phonon frequencies with increasing temperature.8 Reso-
nant ultrasound spectroscopy has revealed large strains
at the phase transition, which result from optic-mode
softening and a Peierls distortion.9 However, despite the
evidence of a displacive transition, the magnitude of
the softening is consistent with an order-disorder con-
figurational component.9 Strain analysis of the cubic-
to-rhombohedral transition shows a weakly first-order
character,9 which is consistent with evidence for latent
heat in the phase transition from differential thermal
analysis.8

From a theoretical perspective, density-functional the-
ory (DFT) phonon calculations and symmetry arguments
have suggested that the rhombohedral-to-cubic phase
transition is displacive.5 It has been argued that the
transition is driven by the condensation of three compo-
nents of the triply-degenerate T1u transverse Γ−4 soft op-
tic mode at the Brillouin zone-center (q = 0,0,0). When
the mode condenses, the center of symmetry in the cubic
structure is broken, inducing spontaneous polarization
along the trigonal (< 111 >) axis.5

It has also been argued that the use of experimen-
tal techniques that probe the average structure, e.g.
Raman scattering and Bragg diffraction, lead to mis-
leading conclusions regarding the nature of the phase
change.10 By employing other techniques to gather in-
formation about the local structure, such as total scat-
tering and pair-distribution function (PDF) analysis, it
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has been shown that the phase transition shows evidence
of order-disorder behavior.11 This interpretation is based
on the existence of two different Ge-Te bond lengths even
above the critical temperature, indicating that the lo-
cal distortions in the low-temperature phase do not dis-
appear at the transition temperature. Also, extended
x-ray-absorption fine structure (EXAFS) spectroscopy,
which directly probes changes in the Ge-Te bond length
with characteristic time measurement times on the or-
der of 10−15 s, argues for an order-disorder rather than
displacive phase transtion.10 These results demonstrate
that the structure retains the local geometry of the low-
temperature above TC. The fact that GeTe becomes
paraelectric at the macroscopic scale implies that the lo-
cal distortions become stochastic and uncorrelated above
TC. The observation that the local Peierls distortion per-
sists up to the melting temperature led to the conclu-
sion that the transition involves order-disorder behavior
of distorted units.9

Other theoretical studies suggest the existence of two
competing instabilities for GeTe: the structural distor-
tion from the paraelectric-to-ferroelectric phase, and a
metal-to-insulator transition.12 Large values of Born-
effective charges are generally considered reliable indica-
tors of the tendency of an insulator towards a ferroelectric
instability. However, the effective charges are strongly in-
fluenced by proximity to metallicity and by strong elec-
tron correlation. The centrosymmetric phase of GeTe
displays anomalously-large Born-effective charges, which
should result in large frequency splitting between the lon-
gitudinal and transverse optical phonons (LO-TO split-
ting) at the zone-centre .12 However, there is considerable
debate as to whether optic-mode separation at the zone-
center would be visible, since the LO–TO splitting would
vanish in a metallic phase due to screening of long-range
electrostatic fields by carriers.12,13

The present study of GeTe consists of two principal
sections. The first part uses lattice-dynamics calculations
to probe the structural instabilities associated with the
paraelectric-to-ferroelectric phase transition, by employ-
ing the quasi-harmonic approximation (QHA). The sec-
ond part investigates the Rashba and crystal-field split-
ting along the distortion pathway from the cubic to the
rhombohedral phase. These latter calculations are done
using all-electron relativistic quasi-particle self-consistent
GW (QSGW ) theory to obtain highly accurate results.

II. THEORETICAL METHODS

To compute the interatomic force constants, calcula-
tions were performed within the pesudopotential plane-
wave DFT14,15 framework implemented in the Vienna
Ab-initio Simulation Package (VASP) code.16–18 The
semi-local generalized-gradient approximation functional
with the Perdew-Burke-Ernzerhof parametrization re-
vised for solids (PBEsol)19,20 was employed for all cal-
culations. Projector augmented-wave (PAW)21,22 pseu-

FIG. 1. Primitive unit cell of β-GeTe (Fm3̄m), with the Ge
cation (dark purple) at ( 1

2
, 1
2
, 1
2
) and the Te anion (yellow) at

(0, 0, 0). The distorted α (R3m) phase is obtained by displac-
ing the Ge ion in the < 111 > direction to (0.48, 0.48, 0.48)
(light purple with black dashed outline).

dopotentials were used to treat semi-core electronic
states.

The starting point for our calculations was a full
structural relaxation of the two phases, performed with
a plane-wave kinetic-energy cut-off of 800 eV. Such a
high cut-off was found to be necessary to fully converge
the phonon dispersion curves, as discussed in Ref. 23.
The electronic Brillouin zone (BZ) of both phases was
sampled with a Γ-centred Monkhorst-Pack mesh24 with
10×10×10 subdivisions.

The theoretical background to harmonic and quasi-
harmonic lattice-dynamics calculations is presented in
Refs. 23 and 25. In the harmonic approximation (HA),
the equilibrium distance between atoms is independent
of the thermodynamic temperature, and anharmonic ef-
fects are thus required to account for thermal expansion.
We employ the quasi-harmonic approximation (QHA),
in which the thermal expansion of the crystal lattice is
obtained from the volume dependence of the phonon fre-
quencies. To perform a QHA calculation, the phonon
frequencies are calculated for a range of expansions and
compressions about the 0 K equilibrium volume, and the
constant-volume (Helmholtz) free energy for each calcu-
lation is evaluated as a function of temperature. The
equilibrium volume, bulk modulus and Gibbs free energy
can then be obtained at arbitrary temperature by fitting
the free energy as a function of volume to an appropriate
equation of state.26,27

Lattice-dynamics calculations were performed using
the supercell finite-displacement method implemented in
the Phonopy software package,28 with VASP used as the
force calculator.29

Convergence of the phonon supercell size was carried
out against 2×2×2, 4×4×4 and 6×6×6 expansions of the
primitive cell, and it was found that the 4×4×4 super-
cell was sufficient to obtain a good representation of the
phonon density-of-states and band-structures. For both
phases, the phonon frequencies were sampled on an in-
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terpolated 48×48×48 q-point mesh when evaluating the
phonon density of states (DoS) and vibrational internal
energy and entropy.

To correct for long-range Coulomb interactions (LO-
TO splitting), a non-analytical correction (NAC), us-
ing the Born effective-charge tensors and the electronic-
polarization component of the macroscopic static dielec-
tric tensor, was applied.12,30 These quantities were ob-
tained using the density-functional perturbation theory
(DFPT) method implemented in VASP.31 These calcula-
tions were performed on the unit-cells of the two struc-
tures, and convergence of both quantities necessitated
increasing the k-point mesh to 30×30×30 subdivisions
for both phases, due to the narrow band-gap of GeTe.

The macroscopic polarization was calculated by em-
ploying the Berry phase methodology,32,33. Calculations
were performed with the screened hybrid functional of
Heyd, Scuseria, and Ernzerhof (HSE06) to accurately re-
produce the small band-gap, in particular in the high-
symmetry β phase.34,35 The energy cut-off was reduced
to 700 eV, and the k-point mesh to 6×6×6 subdivisions.

To provide quantitative electronic-structure informa-
tion, in particular on the relativistic Rashba split-
ting, further calculations were performed using the
QSGW 36,37 method, as implemented in the Questaal
(formerly LMSuite) package.38 DFT calculations us-
ing the local-density approximation (LDA) functional
(Barth-Hedin parametrization39) were performed along-
side QSGW calculations to evaluate the electronic band
structure. Extended local orbitals were included in the
basis sets for Ge and Te, in order to capture more semi-
core states than with the defaults.

For the DFT-LDA calculations, the BZ was sampled
using the tetrahedron method40 and a sampling mesh
with 12×12×12 subdivisions, which was reduced to a
6×6×6 mesh for the GW calculations. The plane-wave
cut-off for the interstitial charge density (GMAX) was
defined with a 9.1 Ry cut-off radius. For the QSGW cal-
culation the G-vector cut-offs for the interstitial part of
the eigenfunctions and the Coulomb interaction matrix
were set to 6.0 and 5.4 Ry, respectively.

III. RESULTS

A. Lattice Dynamics

The phonon dispersion of the cubic and rhombohedral
phases of GeTe are shown in Fig. 2. The QHA asso-
ciates lattice volumes to thermodynamic temperatures,
and thus allows the temperature dependence of the dis-
persion to be evaluated to this level of approximation.

The dispersion has six phonon branches (3N , where N
= 2 is the number of atoms in the primitive cell), which
are divided into three acoustic and three optic modes.
The acoustic branch is triply degenerate at the Γ-point
with ω = 0 THz, as expected. In the high-temperature
β-GeTe structure, the two transverse optic (TO) modes

are imaginary at Γ (Fig. 2.b), indicative of a ferrolectric
instability.12,13,41 A large splitting of the longitudinal and
transverse optical modes is also evident and is of the or-
der of 5.74 THz. This feature is alos an indicator of a
ferroelectric structural instability, as argued in Ref. 12.
The degenerate X-point TO modes soften gradually with
temperature, and become imaginary at T > 498 K. This
observation supports the findings in Ref. 5, where the
authors calculated the phonon band-structure of cubic
GeTe for a lattice constant measured above TC. Since
the imaginary modes at X are higher in frequency, they
are not active in driving the paraelectric-to-ferroelectric
phase transition.5

Within the QHA, the cubic structure remains dynami-
cally unstable throughout the range of temperatures cov-
ered by our volume expansions, and the imaginary modes
do not stiffen at high T . As noted above, this is consis-
tent with the high-temperature phase being a crystallo-
graphic average of thermal hopping between equivalent
distorted local minima. These results are similar to our
previous work on the inorganic perovskite CsSnI3, where
the two high-temperature phases (cubic and tetrago-
nal) were found to be crystallographic averages over the
low-energy minima separating equivalent orthorhombic
phases,23 which is supported by direct measurements of
the local structure in the high-temperature phase.42,43

In contrast, for the rhombohedral phase (Fig. 2.a),
no imaginary frequencies are observed in any of the cal-
culated dispersion curves, evidencing dynamical stability
across the range of temperatures studied. This is con-
sistent with rhombohedral phase being the ground-state
structure for GeTe.

B. Free Energy

The relative free energies of the two phases (i.e. the
combination of DFT internal energy with the harmonic or
quasi-harmonic vibrational internal energy and entropy)
are shown in Fig. 2.d. The harmonic constant-volume
(Helmholtz) energies predict the phase transition to oc-
cur at T = 615 K, whereas the quasi-harmonic (Gibbs)
energies predict the transition to occur at T = 325 K.
Experimentally, it has been evidenced that the phase
transition occurs between the range of 625–705 K,3,4 and
thus, the harmonic calculation is apparently in better
agreement with the experimental observations. We as-
cribe this to the fact that neither the harmonic nor quasi-
harmonic approximations account for the influence of the
soft modes in the cubic phase on the free energy, both
directly and indirectly via their effect on the frequencies
of orthogonal modes, a deficiency which is amplified by
the sensitivity of the volume to the free energy in the
latter.
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FIG. 2. Quasi-harmonic phonon dispersion curves for α- (a) and β-GeTe (b). Non-analytical corrections to the zone-center
phonon frequencies have been included. The color gradient runs from blue (low T ) to red (high T ) across the temperatures
associated with the volume expansions considered in our calculations. The energy as a function of Ge cation displacement
along the < 111 > direction from the cubic phase (d = 0) is plotted in (c), and shows a classic double-well potential-energy
surface for which the curves have been normalized to the lowest distortion amplitude at T=0 K. Plot (d) shows the harmonic
(constant-volume/Helmholtz; violet) and quasi-harmonic (constant-pressure/Gibbs, pink) free energy of β-GeTe relative to
α-GeTe as a function of temperature.

C. Double Well Energy Surface

We have probed the potential energy surface associated
with the phase transition by mapping the energy as a
function of the distortion connecting the two end points.
We define the coordinate u as the Ge cation displace-
ment from its centrosymmetric position at u = 0, along
the < 111 > crystallographic direction, to the distorted
position at u = 1 (Fig. 1). The result is a characteristic
double-well potential energy surface with β-GeTe being
a saddle point between two α-GeTe local minima. In the
T = 0 K structure, the calculated energy barrier is on
the order of 13.1 meV, and increases up to 31.5 meV at
higher temperatures.

Up to T = 498 K, the energy barrier is lower than
that required for the hopping process to be spontaneous

given the available thermal energy (kBT ∼25 meV at
T = 300 K). Above T = 498 K, the barrier increases
in height, making it harder for the transition between
minima to occur. When T = 0 K, the energy minima
correspond to a ∼0.02 Å displacement of the Ge cation.
At higher temperatures the minimum shifts further, with
the highest distortion of ∼0.03 Å at T = 982 K.

The increase of the barrier with thermal expansion can
be explained based on the bonding formation between
Ge and the Te ions. Since the Ge ion moves to form
bonds with three Te ions, then the more the structure
expands, more energy is required to break the bonds to
move it from one set of Te neighbours to the other, thus
increasing the energy barrier.
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D. Electronic Band Structure

The calculated electronic band structure of rhombo-
hedral GeTe is shown in Fig. 3. We compare results
obtained using DFT with the LDA functional and the
QSGW method, and observe differences in the electronic
spectra and consequently the band gaps and SOC split-
ting.

The direct band gap at the high-symmetry point L =
(0.0, 0.5, 0.0) is 0.47 eV with DFT-LDA and increases
slightly to 0.54 eV with QSGW. The LDA values are a
quantitative match for the 0.48 eV gap obtained from
the LDA calculations in Ref. 13. There is a smaller
indirect band gap to a conduction band minimum (CBM)
at L′ = (0.35,0.20,0.20). Our calculations yield indirect
gaps of 0.35 and 0.41 eV with DFT-LDA and QSGW,
respectively, which are slightly higher than the LDA gap
of 0.28 eV quoted in Ref. 13.

E. Rashba Splitting

The spin-orbit coupling in α-GeTe induces Rashba
splitting centred around the high-symmetry point, Z,
which is the wavevector perpendicular to the direction
of the ferroelectric distortion. The Rashba band gap in-
duced by the splitting along the Z − A direction, ER

g ,
is calculated to be 0.56 eV with both DFT-LDA and
QSGW. We obtain a band gap at Z, EZ

g , of 0.68 and
0.63 eV with DFT-LDA and QSGW, respectively. These
calculations may be compared to literature values of 0.74
eV with PBE1 and 0.96 eV with HSE06.2,46 We note that
both calculations from Refs. 1, 2 and 46 were performed
using pseudopotentials, as opposed to the all-electron cal-
culations performed in the present work.

We have further calculated a set of band structures
along the α to β-GeTe transition (Fig. 4). Two points
correspond to the high-symmetry structure with u = 0
(β-GeTe) and the ferroelectric structure with u = 1 (α-
GeTe), while the other four are intermediate configura-
tions along the distortion path.

Rashba splitting is absent in β-GeTe, owing to the
presence of a center of inversion. Distortion leads to an
increase in the magnitude of the Rashba splitting (Fig.
5), and a corresponding increase Rashba band gap from
0.06 to 0.56 eV (Tab. I). Fig. 4 shows that the upper va-
lence and lower conduction bands of the centrosymmetric
phase are doubly degenerate, and the spin degeneracies
are lifted along the distortion path, leading to the ob-
served increase in the band-gap widths.

F. Role of Spontaneous Polarization

The macroscopic electric polarization, calculated as
the sum of electronic and ionic components using the
Berry phase approach, are shown along the distortion
path in Fig. 5. The spontaneous polarization shows a

TABLE I. Calculated (QSGW ) band gaps obtained from
the six different dispersions depicted in Fig. 4, where the
coordinate u = 0.0 corresponds to the high-symmetry β-GeTe
structure and u = 1.0 indicates the low-symmetry α phase.
ER

g refers to the Rashba gap located along the Z−A direction,

while EZ
g is the gap at the Z-point.

u=0.0 u=0.2 u=0.4 u=0.6 u=0.8 u=1.0

ER
g (eV) 0.06 0.10 0.18 0.30 0.42 0.56

EZ
g (eV) 0.06 0.11 0.21 0.32 0.47 0.63

mild quadratic behaviour on going from the β to the α
phase, resulting in a polarization difference between the
end-points of ∆Ps = 0.53 Cm−2. This difference is con-
sistent with the value of ∆Ps ∼ = 0.60 Cm−2 calculated
in Ref. 13.

We can track the strength of the Rashba effect in GeTe
through the Rashba energy ER, which is the energy split-
ting from the high-symmetry point, along with the cor-
responding k-space momentum offset kR. These quanti-
ties are calculated by searching for the extremal points
of the valence and conduction bands using a gradient-
minimization approach. The full Rashba interaction pa-
rameter is then defined as αR = 2ER/kR.1,2,46

We tested the functional dependence of αR in the low-
temperature phase of GeTe. With DFT-LDA, αR=4.10
eV Å and 1.89 eV Å, for the VBM and CBM respectively,
with ER=90.86 meV and kR=0.044 Å−1 for the VBM
and ER=31.60 meV and kR=0.033 Å−1 for the CBM.
These results are in agreement with the values from Refs.
1 and 46, which quote PBE values of αR=4.9 eV Å for
the VBM (ER = 227 meV and kR=0.094 Å−1) and 2.5
eV Å for the CBM (ER = 120 meV and kR=0.094 Å−1).
Still from Refs. 1 and 46 the values of HSE06 for the
VBM decrease slightly when compared to their PBE val-
ues, although still higher when compared to the present
results: αR=4.2, with ER = 187 meV and kR=0.088 Å−1.

For QSGW, a relevant decrease in the Rashba parame-
ter for the VBM splitting is observed, which is mostly due
to the contribution of ER which presents a much lower
value than for LDA (VBM: kR=0.028 Å−1, ER=44.84
αR = 3.24 eV Å. CBM: kR=0.022 Å−1, ER=22.67 meV,
and αR = 2.07 eV Å).

In contrast to the smooth change in lattice polarization
through phase transition, the behaviour of the Rashba
parameter is markedly non-linear. Instead it fits to a
fourth-order polynomial, with a maximum between u =
0.4–0.6. The magnitude of the Rashba splitting is larger
for the valence band, which is formed mainly from p
states from the heavier Te ions, whereas the conduction
band is composed of predominantly Ge p states.12
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FIG. 3. Relativistic electronic band structure of the α (R3m) phase of GeTe. The lattice parameter a300K = 6.48 Å is the
value obtained from the quasi-harmonic approximation. The dotted black line shows the DFT-LDA band structure, while the
solid red line shows the dispersion obtained from QSGW calculations. Both sets of calculations are performed using the same
all-electron code, and the band dispersions are aligned to the calculated Fermi energies, and set to E = 0 eV. The left-hand plot
shows the band structure along the main high-symmetry segments in the R3m space-group, while the right-hand plot shows
the dispersion along the A-Z-U path,45 which is the plane normal to the polarization vector where the largest Rashba splitting
is observed.

G. Role of Crystal-Field Splitting

The interactions responsible for the large Rasba-
splitting in GeTe are not only the strong spin-orbit cou-
pling, which induces splitting in the electronic band
structure by coupling the spin and orbital degrees of
freedom, but also the crystal-field (CF) splitting aris-
ing from changes in the local and long-range chemical
environments. As a descriptor of the CF contribution,
we calculate the on-site electrostatic-potential gradient
at each of the lattice sites in the crystal. The values
obtained from QSGW are shown in Fig. 5.c.

As expected, the magnitude of the CF is proportional
to the spontaneous polarization, but there is a difference
between lattice sites. In the Fm3̄m phase, the contribu-
tion of the two ion centers is zero, since the SOC and CF
do not break the centrosymmetry of the crystal struc-
ture. For the intermediate structures, the intensity of
the local electric field at the anion and cation sites in-
creases linearly up to 0.44 and 1.04 eV/Å at the Te and
Ge sites, respectively. The Ge center makes a slightly
higher contribution to the splitting, which is due to the
displacement of the cation from the centrosymmetric po-
sition adjusting the surrounding charge distribution of
the Te anions and resulting in two different Te neighbor

distances.12

IV. CONCLUSIONS

Despite its apparently simple chemistry and crys-
tal structures, the physics of the phase transformation
in GeTe continues to promote great debate, with evi-
dence for the transition being both displacive and order-
disorder nature. The imaginary phonon mode observed
in the high-temperature cubic β-phase of GeTe in har-
monic and quasi-harmonic lattice-dynamics calculations
would appear to suggest a displacive second-order phase
transition, which agrees not only with other theoreti-
cal results from relevant literature, but also from ex-
perimental techniques that probe the average structure.
However, local structure and calorimetric measurements
suggest the high-temperature phase is a crystallographic
average over soft-mode minima. Our calculations also
suggest that dynamic fluctuations in the local structure
would occur as the cation transitions between local min-
ima across a small energetic barrier. Moreover, our quasi-
harmonic results imply that the cubic structure is a crys-
tallographic average over the low-energy minima separat-
ing equivalent rhombohedral phases, since the dynamical
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eter (αr) of the valence (black) and conduction (red) bands
calculated using QSGW. (c) Change in crystal-field splitting
of the Ge (red) and Te (black) ions calculated from QSGW.

instabilities persist for the high-symmetry phase at any
studied temperature range.

We have shown that there is a smooth increase in spon-
taneous polarization on transition from the paraelectric
β to ferroelectric α phase of GeTe, which is in with other
published works. This smooth increase is accompanied
by an increase in the electronic band gap and the appear-
ance of relativistic Rashba splitting in the band struc-
ture. However, the Rashba interaction saturates at small
distortion amplitudes due to the balance between macro-
scopic spontaneous polarization and local crystal-field ef-
fects.

We have presented results from all-electron QSGW
calculations of the dynamics of the Rashba splitting
and the crystal-field splitting as the distortion proceeds.
Present QSGW results suggest that the Rashba param-
eter at the rhombohedral phase is smaller at the VBM
than previously suggested through relevant theoretical
literature, although the trend of the magnitude between
the VBM and CBM parameter is the same (at the CBM
the Rashba splitting has smaller magnitude). the crystal-
field splitting shows a linear trend along the distortion
path, with the biggest interaction occurring due to the
Ge ion.
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V. APPENDIX

A. Crystal Structure Optimization

Equilibrium volumes, lattice parameters and bulk
moduli were determined by fitting energy-volume curves
to the Birch-Murnaghan equation of state.26,47 Table II
presents the calculated lattice parameters and bulk mod-
uli of the two phases of GeTe. For the cubic structure,
we obtain a lattice parameter of a0 = 6.47 Å and a bulk
modulus B0 = 58 GPa. The parameters for the rhombo-
hedral structure are very similar at a0 = 6.47 Åand B0

= 55 GPa.

TABLE II. Equilibrium lattice parameters, a0, and Bulk
moduli, B0, of the two phases of GeTe. We compare the equi-
librium parameters to the values obtained within the quasi-
harmonic approximation at room-temperature (T = 300 K)
and close to the phase-transition (T = 700 K).

a0 (Å) B0 (GPa)

0 K 300 K 700 K 0 K 300 K 700 K

Fm3̄m(225) [a][b] 6.47 6.52 6.55 58 50 160

R3m (160) [c] 6.47 6.48 6.49 55 73 79

aa0 = 5.85 Å; B0 = 51 GPa (LDA)48
b a0 = 5.99 Å (Exp. ∼= 300 K)49
c a0 = 5.89 Å (LDA)13

B. Effect of LO–TO Splitting

Fig. 6 shows the phonon band structures of the cu-
bic (a) and rhombohedral (b) phases of GeTe, with and
without non-analytical corrections for LO–TO splitting.
In the cubic structure (a), the correction lifts the LO
mode from the doubly-degenerate TO modes, and it be-
comes real with ν ∼ 3.5 THz. The rhombohedral phase
also shows large LO-TO splitting of 1.4 THz, although
the three Γ-point optic modes have real frequencies.

C. Effect of Pressure

Fig. 7 shows potential-energy surface as a function of
Ge cation displacement of the cubic phase under pres-
sure. As the lattice constant is reduced and the pressure
increases, the energy minimum shifts towards zero and
the barrier between minima is progressively reduced; for
the maximum applied pressure of 28.35 GPa, correspond-
ing to a reduction in the volume of 3.12 Å3, the energy
minimum lies close to 0.01 Å, and the barrier decreases to
3 meV. These results suggest that the ferroelectric insta-
bility in the cubic phase may be suppressed by pressure,
since beyond a threshold pressure the barrier will dis-
appear and leave a single minimum at the cubic cation

-3

-2

-1

  0

  1

  2

  3

  4

  5

  6

Γ X W L Γ

F
r
e
q
u
e
n
c
y
 
[
T
H
z
]

a) NAC No NAC

-1

  0

  1

  2

  3

  4

  5

  6

Γ L U X Γ Z U

b)

FIG. 6. Phonon band structures of the cubic (a) and rhom-
bohedral (b) phases of GeTe. Each plot compares the disper-
sions obtained with and without a non-analytical correction
to the long-wavelength phonon frequencies (q → 0), which
results in large LO-TO splitting at the zone-centre.

 0

 5

 10

 15

 20

 25

-1.5 -1 -0.5  0  0.5  1  1.5

E
n
e
r
g
y
 
[
m
e
V
]

Displacement

V-13∆
V-12∆
V-11∆
V-10∆

V-9∆
V-8∆
V-7∆
V-6∆

V-5∆
V-4∆
V-3∆
V-2∆

V-∆
V
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position. This is easily anticipated from the fact that
the cation will be restricted to the cubic position due to
space constraints at reduced lattice volumes.
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4.2 Effective Mass

In a solid electrons experience a potential in the crystal, which can be accounted for by

treating them as free electrons with an effective mass m∗ [110].

The de Broglie wave-length is written as:

λ =
h

p
, (4.1)

where p = mν is the momentum of the electron and h is the Planck constant. By noting that

k = 2π/λ, we can re-write the wave-vector in the form:

k =
p

h̄
(4.2)

where h̄ = h/2π is the reduced Planck constant.

The energy states of a free electron as a function of the wave-vector, can be represented by

the dispersion relation as:

E =
1

2
mv2 =

p2

2m
=
h̄2k2

2m
(4.3)

An exact defined value of the wave-vector, k, implies complete uncertainty about the

position of the electron in real space (Heisenberg uncertainty), and thus localisation can be

described by expressing the state of the electron as a wave-packet, with a defined velocity. The

group velocity defines the slope of the dispersion relation, and is given by:

vg =
∂ω

∂k
(4.4)

The frequency, ω, is related to the energy E through the Planck-Einstein relations:

E = ωh̄ (4.5)

Combining Eqs. 4.2 and 4.5 one obtains:

vg =
1

h̄

∂E

∂k
(4.6)

Differentiating Eq. 4.6 with respect to time, one therefore obtains:

∂vg
∂t

=
1

h̄

∂2E

∂k∂t
=

1

h̄

∂2E

∂k2

∂k

∂t
(4.7)
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From the Planck-Einstein relation, (Eq. 4.5), we can write:

mvg = h̄k (4.8)

and thus:

m
∂vg
∂t

= h̄
∂k

∂t
(4.9)

which gives the force, F , acting on the group of electrons. Combining Eqs. 4.7 and 4.9, yields:

F =
h̄2

∂2E/∂k2

∂vg
∂t

(4.10)

Since there is a force acting on the electrons, the mass of the free electron should be replaced

by an effective mass, m∗, which is given by:

1

m∗
=

1

h̄2

∂2E

∂k2
(4.11)

The effective mass determines the local curvature of the dispersion energy of reciprocal

space, and is therefore a tensor qunatity [110]:

(
1

m∗

)

αβ

=
1

h̄2

∂2E

∂kα∂kβ
(4.12)

where α, β are the three Cartesian directions.

The density of states (DOS) effective mass can be obtained as the geometric mean of the

three masses. Taking into account that there may be several equivalent minima (e.g., two

degenerate bands at the high symmetry Z-point in the rhombohedral phase of GeTe), one

obtains the DOS effective mass by:

m∗dos = g2/3(mxmymz)
1/3 (4.13)

where g is the degeneracy factor counting the number of equivalent valleys. By considering

the DOS on a per-valley basis one may omit g [111], which we do hereafter.

Table 4.1 presents the calculated effective masses at the Rashba-gap, obtained by employing

the QSGW method (complete details of the parameters for the calculation can be found in

Sec. 4.1). It can be seen that the effective masses are anisotropic, and for the cubic structure,

at u=0.0, that they are lighter in two directions and heavier component in the third. As

the symmetry is broken, the anisotropy of the mass components are also altered. Anomalous

behaviour of the intermediate structure (u=0.8) is observed at the valence band (z-direction)
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Table 4.1: QSGW principle effective masses in the x-, y- and z- directions, calculated at
the Rashba-gap (along the A-Z segments) for the two phases of GeTe, Fm3m and R3m, and
also for four intermediate structures, along the distortion path between the two phases. A
negative valence band mass is consistent with a downward curvature, whereas the masses of
the conduction band are positive (upward curvature). Values are given in units of the rest
mass, where m0= 9.11 × 10−31 kg.

valence conduction

u=0.0 -0.006 -0.006 -0.148 0.154 0.008 0.008

u=0.2 -0.014 -0.028 -0.296 0.295 0.067 0.018

u=0.4 -0.016 -0.235 -0.407 0.882 0.440 0.021

u=0.6 -0.016 -0.035 -0.548 0.504 0.063 0.028

u=0.8 -0.046 -0.959 55.422 0.557 0.524 0.058

u=1.0 -0.074 -1.446 -3.819 13.341 0.380 0.114

with a value of 55.422 m0. Also at the conduction band and for the R3m structure the effective

mass value at the x-direction is also abnormal (13.341 m0). The cause for these discrepencies

are not yet understood and further analysis are required in order to determine the cause of

these irregular values for the obtained effective mass componentes.

For the high-symmetry phase, the geometric means of the per-valley effective masses at

the Z-point are m∗hdos=0.017 m0 and m∗edos=0.021 m0 for the holes and electrons, respectively.

The effective masses increase when the system undergoes the transition to the R3m phase,

such that m∗hdos=0.025 m0 and m∗edos=0.045 m0. By comparing these with m∗ at the Rashba

band-gap (along A-Z), we obtain m∗hdos=0.740 m0 and m∗edos=0.833 m0, with much heavier

masses and thus a different carrier mobility closer to the Fermi level (Sec. 4.1, Fig.4, for more

details).

Fig. 4-1 shows the geometric mean of the per-valley effective masses at the Z-point for

the centrosymmetric phase (Rashba-gap when inversion symmetry is broken), intermediate

structures and the ferroelectric phase. The best adjusted fit was found to be an 8th order

polynomial of the form

ax2 + bx4 + cx6 + dx8 (4.14)

where a, b, c and d are the fitted coefficients and x is the geometric mean effective mass.

The values increase as the splitting increases, with a peak at u=0.8 in m∗hdos due to the

anomalous behaviour of the heavy component (Tab. 4.1).
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Figure 4-1: Effective masses calculated for six structures of GeTe, along the path between
the cubic and rhombohedral structures, where u=0 refers to the former and u=1 to the latter.
Intermediate values lie on the distortion pathway between u=0 and u=1. The plots are fitted
to an 8th order polynomial.

4.3 Dielectric Properties

The Born-effective charges are considered a good indication of a ferroelectric instability,

since the values tend to be larger than the nominal ionic charges in most ferroelectric materials.

However, anomalous values alone are not a sufficient indicator of a ferroelectric transition

[97, 98].

The frequency splitting of the longitudinal and transverse optic modes at the zone centre

(LO-TO splitting) is obtained by including a non-analytical correction to the dynamical matrix

at q → 0, based on the Born effective-charge tensors and the electronic-polarisation component

of the macroscopic static dielectric tensor [112]. For the cubic system, a large LO-TO splitting

in the phonon spectrum is correlated to a strong instability in the system (Sec. 4.1, Appendix

B). The rocksalt GeTe structure shows a doubly-degenerate TO mode and hence has a single

LO-TO splitting, which is isotropic due to the cubic symmetry. These quantities were obtained

by using the density-functional perturbation theory routines (implemented in VASP [113]) on

the unit cells of the two structures. Convergence of these quantities required increasing the

k-point mesh to 30×30×30 for the two phases (more details in Sec. 4.1, Theoretical Methods).

The values of the Born-effective charges are relatively high when compared to the nominal

ionic charges of the elements that comprise GeTe (Ge=+2 and Te=-2) [90]. The arguments rely

on the fact that the differences may be caused by partial hybridization of the p-states in Ge and

Te, resulting in mixed ionic-covalent bonding [90]. The effective charges of the cubic structure

are much larger than those in the rhombohedral structure (Tab. 4.2). For the rhombohedral

phase, the independent components, (one parallel to the trigonal axis and two perpendicular)
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Table 4.2: Born effective-charges of the high-symmetry (Fm3m) and the ground-state (R3m)
phases of GeTe. Values are given in matrix form, where the diagonal elements represent the
x, y and z Cartesian directions.

Fm3m (225)

Te Ge

-10.14629 0.00000 0.00000 10.09108 0.00000 0.00000
0.00000 -10.14629 0.00000 0.00000 10.09107 0.00000
0.00000 0.00000 -10.14629 0.00000 0.00000 10.09107

R3m (160)

Te Ge

-6.38925 0.72864 0.72864 6.38995 -0.73020 -0.73020
0.72843 -6.38831 0.72843 -0.73000 6.38901 -0.73000
0.72865 0.72865 -6.38765 -0.73011 -0.73011 6.38838

are slightly higher than those reported in Ref. [90]. In the present work, we obtain for the Ge

ion 7.120 and 4.929 (eigenvalues calculated from the matrix shown in Tab. 4.2), whereas the

Te charges are -7.117 and -4.931, when compared to 6.897 and 4.574, and -6.894 and -4.571,

for Ge and Te, respectively [90] (28×28×28 k-point mesh spacing, 408 eV energy cut-off and

HGH pseudopotentials). Despite this, the difference between the independent components is

2.2, which is a similar magnitude to that found in Ref. [90], which effect is caused by the

strongly anisotropic charge tensor.

When we apply the Born-effective charges to the phonon band-structure (Sec. 4.1, Ap-

pendix C. Fig. 6.b and Fig. 4-2) and, due to the crystal anisotropy, the LO-TO splitting

varies significantly along different phonon segments. Along the X-Γ direction (
−→
XΓ) three op-

tic modes with different frequencies are observed. Whereas, along the Γ-Z direction (
−→
ΓZ) one

observes that the two lower frequency optic modes are degenerate (E symmetry), with a higher

frequency mode with A1 symmetry [90]. For
−→
XΓ, the three optic frequencies are located at

ν=2.1 THz, ν=3.0 THz and ν=4.2 THz, whereas for
−→
ΓZ we obtain ν=2.1 THz, ν=4.2 THz.

The lower and higher frequencies observed in the present calculations are consistent with what

was obtained theoretically in Ref. [90], where E(TO)=2.2 THz, and A(LO)=4.6 THz and,

experimentally with two lines observed at 4.2 THz and one at 2.9 THz [114].

Also, if one does not consider the NAC term, in order to artificially enforce a complete

screening of the dipole-dipole interaction by the conduction electrons, as argued in Ref. [90],

the higher frequency optic mode, A1, lowers the frequency down to ν=3.4 THz. The second

mode previously located at ν=3.3 THz, becomes degenerate, lowering the frequency down

to ν=2.1 THz (see Appendix C of Sec. 4.1). It has also been argued, from an experimental

perspective, [114] that the LO mode is screening-degenerate with the lower frequency TO mode
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Table 4.3: Calculated dielectric constants (ε∞ij ) for the high-symmetry (Fm3m) and the
ground-state (R3m) phases of GeTe. Values are given in matrix form, where the diagonal
elements represent the x, y and z Cartesian directions.

Fm-3m (225) R3m (160)

119.628750 0.00000 0.00000 59.842286 -3.391783 -3.391783
0.00000 119.628750 0.00000 -3.391783 59.842286 -3.391783
0.00000 0.00000 119.628750 -3.391783 -3.391783 59.842286

due to the high-carrier concentration (dipole-dipole interaction); therefore the TO-LO modes

would correspond to the E mode, of Γ1 ir.reps. The higher frequency A1 mode (Γ3 ir.reps.)

would therefore be the TO, which is split by the anisotropy of the crystal, and it is the mode

responsible for the ferroelectric-to-paraelectric phase transition. [114, 90]

The dielectric tensor, εij , is related to the applied electric field, defined as:

Ei =
∑

j

ε−1
ij E0j (4.15)

where E is the electric field inside the material and E0 is the externally appplied field. The

indices i and j refer to the spatial coordinates. The dielectric tensor can be decomposed into

two components [115, 116] as:

εij = ε0ij + ε∞ij (4.16)

where ε0ij is the ionic contribution (low-frequency) and ε∞ij is the electronic contribution (high-

frequency) and compares as ε∞ = n2, with n being the refractive index [115, 116].

In the case that a material does not respond to the external field, ε∞ij results in the identity

tensor and ε0ij would thus be zero. In order for ε0ij to have a finite value, at least two ions (with

different charges) in the primitive cell would be required [117, 118].

The dielectric constants of the two phases of GeTe are obtained with the same converged

k-point sampling mentioned for the Born-effective charges (30×30×30). For the low-frequency

behaviour, the interatomic force constants were computed using linear-response DFPT calcu-

lations (more details in Sec. 4.1). The high-frequency dielectric constants were obtained by

calculating the optical dielectric functions in the independent-particle approximation.

In Tab. 4.3 the values for ε∞ij are listed in matrix form and Tab. 4.4 gives the corresponding

values of ε0ij . The cubic structure shows very large ε∞ij = 119.6 which is entirely from εij .

This is due to the small band-gap, which is also reflected in the Born-effective charges [90].
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Figure 4-2: Phonon band-structure of the cubic phase (top) and rhombohedral (bottom)
phase of GeTe. Comparison is made when Born-effective charges are applied, which results in
anormously large LO-TO splitting at the zone-centre.
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Table 4.4: Calculated low-frequency dielectric constants (ε0ij) of the high-symmetry (Fm3m)
and the ground-state (R3m) phases of GeTe. Values are given in matrix form, where the
diagonal elements represent the x, y and z Cartesian directions.

Fm-3m (225) R3m (160)

0.00000 0.00000 0.00000 160.368150 -60.805026 -60.805026
0.00000 0.00000 0.00000 -60.805026 160.317851 -60.792190
0.00000 0.00000 0.00000 -60.805026 -60.792190 160.293118

Since the calculations are not considering the long range polarisation interaction, therefore not

considering the splitting betweent the TO and LO optic modes (Sec. 4.1, Appendix B) the

ionic contribution (ε0ij) is zero for the cubic system.

Since the R3m phase has two independent components (perpendicular and parallel to the

trigonal axis), we obtain values of 63.2 and 53.1 for ε∞ij , and 221.1 and 38.7 for ε0ij , respectively.

This results in εij = 284.3 for the perpendicular component and εij = 91.8 for the parallel

component. It should be noted that the ionic contribution, especially for the perpendicular

independent component, is quite high, which can be due to the frequency difference observed

in the phonon-band structure between ν1 = 2.0 THz and ν2 = 3.4 THz, as discussed in Sec. 4.1

(Appendix B). The values of the electronic contributions are close to results obtained in Ref.

[90], but the ionic contributions are higher, with values of 247.32 and 68.67 for the perpendicular

and parallel components, respectively. This discrepancy is likely due to the differences in the

cut-off defined in the two sets of calculations (408 eV vs 800 eV in the present work).

4.4 Electric Equation of State

To assess the macroscopic behaviour through the phase transition in GeTe, an electric

equation of state based on a Landau-type free energy is employed. Within this method, the

evolution of the polarisation from the centrosymmetric to the ferroelectric phase is studied in

order to model the hysteresis behaviour.

By applying an external electric field, E, we will define u as the order parameter (polar

degree of freedom), which refers to the distortion path from the centrosymmetric phase (u = 0)

to the polar structure (u = 1) at E = 0. Since the free energy can be expressed as a function

of u, the dependant variable in thermal equilibrium is obtained by minimising the free energy.

Therefore, by expanding the free energy up to second order in E and sixth order in u, the total

energy and dielectric constants (calculated with DFT using the non-local HSE06 functional

with SOC) can be fitted to the electric equation of state developed in Ref. [91], which applies
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to proper-ferroelectrics and hyperferroelectrics [91]:

F(u,E) = −au2 + bu4 + cu6 − PSuE −
1

2
χe(u)E2 (4.17)

where F is the free energy per volume unit (energy density); χe is the electronic susceptibility as

a function of u (dimensionless parameter since χe = ε∞(u)−1); PS the spontaneous polarisation

at E = 0 (PS(u=1)
− PS(u=0)

); a, b and c are constants, which have to satisfy the dimensions of

energy density since u is a dimensionless parameter.

The polarisation is obtained from:

P (u) = −∂F
∂E

= PSu+ χe(u)E (4.18)

DFT calculations were carried out to obtain the energies and dielectric constants of six

structures along the Fm3m → R3m path. Two of these correspond to the end-points, i.e.

the high-symmetry structure with u=0 (Fm3m) and the ferroelectric structure with u=1

(R3m). The remaining four are intermediate configurations corresponding to the distortion

path between them. The effect of spin-orbit coupling (SOC) were considered in the calculations.

Since the inclusion of SOC affects the band-gap and characterises the high-symmetry struc-

ture towards metallic behaviour, the PBEsol functional does not prove sufficient to obtain a

good description of the dielectric tensors. Therefore, and for this effect, the HSE06 functional

was employed with a reduced Γ-centered 6×6×6 k-point mesh and a plane-wave cut-off of 700

eV. The frequency dependant dielectric response was computed within the independent-particle

approximation.

The macroscopic polarization was evaluated using the Berry phase expressions and we

obayained a spontaneous polarization of ∆Ps = 0.533 Cm−2. This value is obtained by com-

paring the calculated polarisation of the centrosymmetric structure with that of the ferroelectric

phase (more details in Sec. 4.1, Fig. 5.a).

Fig. 4-3 shows the computed energy landscapes and the results obtained from DFT by

fitting the data to the electric equation of state (Eq. 4.17). The top panels of Fig. 4-3 (left)

plot the relative energies of the six structures (referenced to the high-symmetry structure) along

the distortion path. The top right panel shows the dielectric constants of the six structures, and

as discussed in Sec. 4.3, the value for the cubic structure when compared to the ferroelectric

phase at u=1.0 is very high. One must point out that the values presented in Sec. 4.3 are

slightly different, since the present calculations were carried out by using the hybrid functional

instead of PBEsol as in Sec. 4.3.

The middle panels of Fig. 4-3 show the behaviour of the Landau free energy from Eq. 4.17

(left) and the polarisation from Eq. 4.18 (right) as a function of the distortion, for different

intensities of applied electric field. For E = 0, the free energy only depends on the relative
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Figure 4-3: Computed energy landscape and electric equations of state for GeTe (with spin-
orbit coupling). Top plots: Internal energy vs polar mode (left) and zero field electronic
susceptibility vs polar mode (right). Middle plots represent the effect of the free energy density
and polarisation under the application of different electric fields. Bottom plot: Polarisation
vs Electric Field. Dashed red lines are locally unstable; solid red lines are locally stable; solid
black lines are globally stable regions.
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energies of the systems, as the last two terms in Eq. 4.17 vanish. When a field is applied we

observe that for the same magnitude, but reversed sign, the features are symmetrical. The

polarisation when E = 0 is zero at u=0.0, and has a finite value at u=1.0 (∆Ps=0.533 C/m2).

The polarisation then assumes a finite value at u=0.0 when a field is applied. The polarisation

values are quite large at u=0.0 and decrease at u=1.0, following a symmetric behaviour with

the sign of the field. By inspecting Eq. 4.18, one may conclude that the large polarisation

for the high-symmetry structure arises due to the large values of the dielectric constant f this

phase, and since these are multiplied by E, the last term of Eq. 4.18 accounts for the increase

of P when E increases.

The last panel of Fig. 4-3 plots the P-E hysteresis loop for GeTe. At E=0, we have a

remanent polarisation, which is equal to the spontaneous polarisation of the material, Pr=0.533

C/m2. Since P is multivalued at E=0, this indicates that GeTe is a ferroelectric, as expected.

To destroy the remnant polarisation, the crystal must be polarised in the opposite direction

by applying an opposite electric field. The coercive field at P=0 c/m2, which is needed to

counteract the polarisation, is E=0.007 C/m2. The saturation limit, where all material dipole

moments are aligned parallel to the external electric field (single domain), occurs when E=0.01

C/m2, for P ∼1.324 C/m2.
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Chapter 5

Bilayer Graphene (BLG)

The thing that doesn’t fit is the thing that’s the most interesting: the part that doesn’t go

according to what you expected.

Richard P. Feynman

Many properties of the monolayer graphene (MLG) have been theoretically studied to

allow further characterisation of this material. These properties are unconventional due to the

unique band structure of graphene, which is described in terms of Dirac fermions.

The experimental study of graphene triggered a growing attention to its electronic prop-

erties [119], because the honeycomb lattice defines a band structure [120] with two nodal

points in the Brillouin zone, which determines a relativistic Dirac-type electronic dynamics

[121] (creating links with certain theories of particle physics). These properties are responsi-

ble for the unusual phenomena that emerge in the material, such as the fractional Hall effect

[122, 123, 124, 125], which allows the possibility for magnetic catalysis of an excitonic gap

[126, 127, 128, 129, 130], ferromagnetism and superconductivity [131].

More recently, attention has turned to multilayer graphene [132] and, particularly, to the

bilayer graphene (BLG), which also reveals abnormalities, i.e. Quantum Hall effect [133].

In fact, it was shown that the BLG also shows unconventional behaviour in its properties,

however, these properties are different from those observed in MLG.

Between several derivatives of the MLG system, special interest is also given to its bilayer

allotrope. Two known modifications of bilayer graphene (BLG) can coexist with different

stacking environments: the Bernal (or AB) and its alternative AA structure. The interest in

BLG is mainly due to the possibility of inducing a semiconductor with a tunable band gap.

The most reliable structure for external tuning has been observed for the Bernal-stacked BLG,

which can occur through the application of an electric field normal to the layers [19].

The study of the structural (in)stabilities of the AB and AA stackings was structured

between two different studies. The first study is related to the electronic properties of the

96



(un)biased systems, in which the widths of the band-gaps as a function of different bias

strengths are analysed, together with the scaling behaviour of the band dispersion in momentum-

space. The DFT-LDA electronic dispersion is compared with analytical tight-binding band

dispersions, in order to adjust the convergence parameters of the DFT calculations accord-

ingly. Moreover, the effects of spin-orbit coupling are also considered together with the applied

bias. The second part relates lattice dynamics within the harmonic approximation with the

different bias intensities.

5.1 Electronic and Phonon Instabilities in Bilayer Graphene

under Applied External Bias

The manuscript that follows concludes the work carried out during the last stages of the

PhD. For this, the acquired knowledge of lattice dynamics was essential to compute and analyse

the phonon dispersions of the 2D biased bilayer systems. Also the work was extended to obtain

a more complete understanding of the electronic properties of this graphene analogue for which

the stacking layout deeply affects the weak coupling interaction of the two layers.
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Abstract. We have performed electronic-structure and lattice-dynamics calculations

on the AB and AA structures of bilayer graphene. We study the effect of external

electric fields and compare results obtained with different levels of theory to existing

theoretical and experimental results. Application of an external field to the AB bilayer

alters the electronic spectrum, with the bands changing under bias from a parabolic

to a ”Mexican hat” structure. This results in a semi-metal-to-semiconductor phase

transition, with the size of the induced electronic band-gap being tuneable through the

field strength. A reduction of continuous symmetry from a hexagonal to a triangular

lattice is also evidenced through in-plane electronic charge inhomogeneities between

the sublattices. When spin-orbit coupling is turned on for the AB system, we find

that the bulk gap decreases, gradually increasing for larger intensities of the bias.

Under large bias the energy dispersion recovers the Mexican hat structure, since the

energy interaction between the layers balances the coupling interaction. We find

that external bias perturbs the harmonic phonon spectra and leads to anomalous

behaviour of the out-of-plane flexural ZA and layer-breathing ZO’ modes. For the AA

system, the electronic and phonon dispersions both remain stable under bias, but the

phonon spectrum exhibits zone-center imaginary modes due to layer-sliding dynamical

instabilities.

Keywords: Bilayer graphene, electric field, electronic properties, lattice dynamics

1. Introduction

Among the numerous derivatives of the monolayer graphene (MLG) system, special

interest has been given to the multi-layer allotropes [1], in particular Bernal bilayer

graphene with AB stacking (AB-BLG) [2]. Like ML graphene, BL graphene also
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displays unconventional properties [3] that are relevant to technological developments

including tunnelling field-effect transistors [4], high-rate lithium-sulphur batteries [5, 6],

nanophotonics [7], sensor modelling [8], among others. These properties originate

from the weak coupling between layers, which allows for the properties of the base

ML graphene material to be retained. Despite the similarities between ML and BL

graphene, there are also significant differences between the two allotropes. ML graphene

shows a linear band dispersion near the Fermi energy, and the valence and conduction

bands touch at the K-point (the Dirac point), yielding the characteristic dispersion

of relativistic massless Dirac electrons [9, 10]. For unbiased AB-BLG, on the other

hand, the interlayer coupling produces a parabolic-like band structure around the K-

point. These different features result in a vanishing of the density-of-states (DOS) at the

Fermi energy for the MLG [10], in contrast to a finite DOS evidenced in the AB-BLG.

Another characteristic feature of AB-BLG is the behaviour of the system when an

electric field is applied normal to the layers. It has recently been shown that biased

AB-BLG can form a Wigner crystal, due to the existence of different kinetic-energy

dispersions at different electron densities [11]. The energy band gap can be tuned in

proportion to the intensity of the applied bias [2], and two distinct zero-temperature

quantum phases at different electron densities can be formed [11, 12].

For the AB-BLG system, the presence of significant SOC has been evidenced by

topological-insulator behaviour with a finite spin Hall conductivity [13]. Moreover, it

has also been shown that biased BLG may exhibit two topologically-distinct phases

depending on the intensity of the Rashba spin-orbit coupling (RSOC) [14]. For weak

coupling, the system exhibits a quantum-valley Hall state, which can then transition to a

topological insulator in the presence of strong coupling effects. It is possible to transition

between these two phases by tuning the applied electric field [14]. In the presence of

strong RSOC, and for sufficiently short-range electron-electron interactions, the system

minimises its energy by adopting broken-symmetry states (mostly those which break

rotational symmetry) in the limit of low densities [15]. These instabilities occur due

to the energy dispersion having a minimum in a region of momentum-space which is

bounded by two concentric circles with finite radius (annuli) [16]. Moreover, distortions

to the Fermi surface, resulting from a momentum-space change in the Fermi radius

(a Pomeranchuk instability) can reduce the lattice symmetry and lead to spontaneous

longitudinal currents [16].

Another stacking arrangement of BL graphene, which coexists with the AB

stacking, is the AA structure where the carbon atoms are positioned directly above

each other in consecutive layers. The electronic properties differ from those of AB-BLG

due to the the stacking arrangement. AA stacking has been experimentally observed

in disordered or pregraphitic carbon, also known as turbostratic graphite, and can be

distinguished from ML graphene by so-called tilting experiments [17, 18]. However, as

the space groups of AA-BLG and MLG are the same (P6/mmm), similarities between

the two are difficult to predict.

Between the two stacking environments, the AB stacking is the most energetically-
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favourable form, and is separated from the AA stacking by a small energy barrier.

Despite its instability, AA-BLG has started to receive significant attention. The AA

configuration shows unusual electronic properties, with two degenerate electronic and

hole bands crossing at the Fermi energy [19]. This electronic structure supports several

electron and electron-phonon instabilities, which include, among others, a shear-shift

instability [19]. It has further been observed that small perturbations can destabilize

the degenerate spectrum and generate an excitonic gap [19, 20]. .

While the AB-BLG system is well studied both experimentally and theoretically,

comparatively less attention has been given to the AA stacking. In the present work,

we aim to provide more insight into the electronic and vibrational properties of biased

AA-BLG, and to make a comparison to the AB-system, by employing first-principles

simulation techniques.

We find that while the AB system presents variations on the electronic densities

as a function of the applied bias, we observe that the AA system remains unaltered

when an electric field is applied. SOC effects are also considerable for the biased AB-

system, with the band-gap presenting different scaling behaviours according to the field

intensities. The phonon dispersions of the biased AB system shows instabilities of the

out-of-plane acoustic and optic modes, when compared to the stability of these modes

for the unbiased system. On the other hand, phonon dispersions of the AA system

remain stable under bias, but the phonon spectrum exhibits a zone-center imaginary

mode resulting form the shear-mode instability.

2. Theoretical Framework

We study the electronic structure of the two different stacking environments of the BLG

system (crystal structure of AB- and AA-BLG presented in figure 1) using density-

functional theory (DFT) with the Local-Density Approximation (LDA) functional. An

external electric field is applied in the direction of the interlayer plane with variable

magnitude. Lattice dynamics are performed within the harmonic approximation, which

yields phonon frequencies and the constant-volume terms in the free energy from lattice

vibrations.

2.1. Density Functional Theory

Electronic-structure calculations were performed within the pseudopotential plane-

wave density-functional theory (DFT) framework, as implemented in the Vienna Ab-

initio Simulation Package (VASP) [21, 22, 23] code. The Ceperley and Alder form of the

Local-Density Approximation (LDA) functional, parametrised by Perdew and Zunger

[24], was used in conjunction with projector augmented-wave (PAW) pseudopotentials

[25, 26]. We selected the LDA functional because it is known to perform well at

capturing the interlayer distance in graphite and multi-layer graphene allotropes, as well

as the essential physics of the electronic structure, and also performs well for calculating
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a) b)

Figure 1. Supercell of the AB- (space group P − 3m1, no 164; a) and AA-BLG

(space group P6/mmm, no 191; b) systems, where the black line shows the unit-cell.

BLG consists of two coupled monolayers of carbon atoms, each with a honeycomb

crystal structure. In order to satisfy the translational and symmetry properties of

the Bravais lattice, the honeycomb lattice can be seen as two triangular sublattices,

mathematically labelled as inequivalent A and B lattices, each of which contains two

atoms in the unit cell within each C sheet, with atom [a1, a2] ∈ A and [b1,b2] ∈ B for

layer 1 and 2. The layers of the AB-BLG are arranged in such a way that one of the

atoms from the lower-layer b1 is directly below atom a2 from the upper layer, and the

remaining two atoms, a1 and b2, are shifted from each other by a vector displacement

[10]. For the AA-BLG, the carbon atoms are aligned in the consecutive layers, directly

above/below each other (a1 with a2 and b1 with b2).

interatomic force constants and phonon frequencies [27, 28].

A plane-wave cut-off of 800 eV was applied in all calculations; although convergence

of the electronic structure was attained at a lower cut-off of ∼ 600 eV, a higher value

was chosen to improve the description of the structural parameters and forces, which

is important for accurate lattice-dynamics calculations [29]. The Brillouin zone (BZ)

was sampled with Γ-centred Monkhorst-Pack meshes [30] with 44×44×1 and 90×90×1

subdivisions for AA- and AB-BLG respectively. It was found necessary to employ the

denser k-point mesh for the AA-BLG model due to differences in the DFT electronic

band structure relative to the spectra expected from tight-binding theory (section

Appendix A). The vacuum spacing between periodic images along the Z direction was

set to 15 Å for both configurations, and dipole corrections to the potential were applied

to avoid interactions between periodic images.

Lattice-dynamics calculations were carried out using the Parlinski-Li-Kawazoe

supercell finite-displacement method [31, 32], which is implemented in the Phonopy

[33, 34] package; a detailed description of the theoretical implementation can be found in

Refs. [35, 29]). The interatomic force constants were obtained by performing single-point

force calculations on a series of symmetry-inequivalent displaced structures and fitting

the resulting force/displacement curves to a harmonic function. VASP was used as the

force calculator [32] and the calculations were performed on 4×4×1 supercells using a

reduced k-point sampling mesh of 12×12×1 for both phases. For the calculations under

bias, the electric field was applied during the force-constant calculations. To construct
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the phonon density of states, the phonon frequencies were sampled on an interpolated

48×48×1 q-point mesh.

A non-analytical correction (NAC) was applied when computing the phonon-

band dispersion [36] to correct for long-range Coulomb interactions. The requisite

Born effective-charges and static dielectric constant were computed using the

density-functional perturbation theory (DFPT) routines implemented in VASP [37].

Convergence of these quantities required increasing the k-point mesh for the AB system

up to 80×80×1, whereas for the AA system the 90×90×1 mesh was found to be

sufficient.

A bias was applied in the calculations as an external electrostatic field in the

Z direction and geometries were re-optimised with different intensities of the field.

Born effective-charges and dielectric tensors were calculated by considering the field

perturbations. For the lattice-dynamics calculations, the bias was also applied during

the calculations of the force constants.

3. Results and Discussion

The lattice parameters obtained within the LDA are a0=2.42 Å and c0=6.69 Å for

the AB system, and a0=2.45 Å and c0=6.67 Å for the AA system. The intra-layer

distance (C-C bond lengths) are on the order of 1.41 Å in both stacking environments,

and the interlayer distance was calculated to be 3.35 Å and 3.34 Å for the AB and

AA configurations, respectively. The parameters for AB-BLG are in agreement with

those discussed in Ref. [38], where the calculations were also performed with DFT-LDA

(intra-layer distance of 1.41 Å and interlayer distance of 3.31 Å). The present interlayer

parameters also compare well to experimental results, where for the Bernal graphite

the value of 3.35 Å [39] was observed. However, for the AA-BLG the present interlayer

distance is found to be slightly lower than results found in literature: 3.59 Å from DFT-

LDA calculations [38], and 3.55 Å from experimental observations on the AA graphite

structure [40].

3.1. Electronic Spectrum from a Density-Functional and Tight-Binding Perspective

To study the electronic structure, we calculated the low-energy band dispersions

using LDA-DFT with three intensities of applied electric field. The results are presented

in figure 2. For the AB-BLG configuration (Figure 2.a), when E = 0 eV/Å, a zero-

gap parabolic dispersion around the K-point is observed. The LDA-DFT electronic

dispersion for the AB system shows similar features to the band-structure obtained

from the tight-binding Hamiltonian (figure A1, Appendix A).

When a finite electric-field is applied perpendicular to the graphene layers in AB-

BLG, the two layers are subject to inequivalent potentials. This effect breaks the

inversion symmetry, resulting in the opening of a single-electron gap [2] at the K-point,

which can be tuned up to mid-infrared energies (∼ 300 meV) [41]. A spontaneous
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Figure 2. Low-energy DFT-LDA electronic band-structure of bilayer graphene

with AB (a) and AA (b) stacking arrangements. Each dispersion is shown at different

applied field intensities (label units given in eV/Å).

translation symmetry breaking also occurs, resulting in a charge separation between the

inequivalent sublattices with spatial in-plane charge inhomogeneities [42, 11].

Figure 3 plots the electron charge densities of AB-BLG in the vicinity of the

Fermi energy, inspection of which reveals differences between the isosurfaces without

(a) and with (b) a bias applied. In the unbiased system (figure 3.a), the charge densities

show hexagonal symmetry, indicating homogeneous electron delocalisation between the

sublattices. On the other hand, when an interlayer electric field is applied (figure 3.b),

redistribution of electron densities leads to charge separation between the A and B

sublattices, leading to in-plane charge inhomogeneities [11].

The AA-stacking environment differs from the Bernal system by having a linear

dispersion with two bands crossing each other at the Fermi energy [10]. Application

of an external field does not alter the width of the band gap, and electronic structure

remains qualitatively the same. This single-electron property seems to be quite stable

to external bias both in the LDA calculations and also with a tight-binding Hamiltonian

[10].

These results are consistent with the electronic dispersion calculated with the tight-

binding method (figure A1), although, as noted above, obtaining a fully-converged

dispersion from the DFT calculations required very dense k-point sampling. This is

because the band crossing does not occur at a high-symmetry k-point, and thus a dense

mesh is required in order to include sufficient sampling around the feature to accurately

represent the bands in the vicinity of the Fermi energy.

Under bias, the dispersion relations of the AB system show a ”Mexican hat”

structure [2, 43]. With increasing field intensity, the width of the gap increases and

the radius of the hat feature widens, with the two minima getting progressively further
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a)

b)

Figure 3. Two different views (top and side) of the isosurfaces (value defined

at 0.016) of the electron charge densities around the Fermi energy for the AB-BLG

system without (a) and with (b) an applied bias (electric field intensity of 0.05 eV/Å.

apart from the K-point [2]. This behaviour is consistent with the results from Ref. [11],

which suggest that regions of the dispersion should exhibit different scaling behaviour as

a function of momentum [11]. Moreover, controlling the magnitude of the gap through

additional screening with a transverse electric field will afford control over the density

of electrons [44].

Figure 4.a shows the electronic band-structure when spin-orbit coupling (SOC) is

included in the calculations.

In the present study, we find that the bulk gap decreases when SOC is turned on,

and then increases gradually for increasing field intensities (Figure 4.a) Under large filed

intensities (∼0.4 eV/Å), the energy dispersion recovers the Mexican hat structure, since

the instability occurring at the Fermi-surface competes with the SOC interaction; the

energy interaction between the layers balances the coupling interaction.

Moreover, Ref. [14] reported that the gap vanished as the SOC parameter increases,

and that on further increasing the coupling parameter it then reopens with a behaviour

characteristic of a band inversion, thus suggesting a topological phase transition [14].

However, since the model employed in [14] is different from the computations carried

out for the presented work, a direct comparison between the two sets of results is not

straightforward.
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Figure 4. Low-energy DFT-LDA electronic band-structure of AB-stacked bilayer

graphene. (a) Dispersions with different intensities of an applied external interlayer

electric field, calculated with spin-orbit coupling. (b) Dispersions of a biased system

(E = 0.20 eV/Å) with and without spin-orbit coupling included. Field strengths are

given in eV/Å.
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Figure 5. Relative free energy (Helmoltz) of the two graphene stacking environments,

AB and AA, with no external electric-bias. The AB arrangement is calculated to be

the most energetically-stable structure up to ∼800 K.
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3.2. Structural Instabilities of Bilayer Graphene - Lattice-Dynamics

Figure 5 shows the constant-volume (Helmoltz) free energy of the AB and AA

bilayer systems calculated without an applied bias. The energies are referenced to

the lowest energy structure, which in the present calculations is the AB system. Our

calculations indicate that the AA system is energetically unstable with respect to the

AB phase up to approx. 800 K, above which the AA stacking becomes lower in energy.

The calculated in-plane phonon dispersion agrees well with the experimental

measurements on graphite presented in [45] (Figure 6), apart from a small shift of

the higher-frequency TO and LO modes. LDA calculations frequently overestimate

the energies of higher-frequency phonons, but despite this difference the characteristic

features of the phonon dispersion are well reproduced.

At low q-vectors, the in-plane transverse acoustic (TA) and longitudinal acoustic

(LA) modes show linear dispersions. Moreover, while the doubly-degenerate LA mode

has zero frequency at the Γ-point, the TA mode (also known as the shear-mode) has a

non-zero frequency at the zone-center [46] (ν = 0.82 THz) (Figure 7).

The ZA mode is the flexural acoustic mode, which corresponds to out-of-plane, in-

phase atomic displacements. In contrast to the TA and LA modes, the ZA branch shows

a parabolic dispersion, i.e. ν ∼ q2, close to the Γ-point, indicating a low group velocity

[47] and being a characteristic feature of layered materials [46, 47]. The existence of

a flexural mode is also a signature of 2D systems, and in particular is a mode which

is typically found in graphene-like systems. Since the long-wave flexural mode has the

lowest frequency, it is the easiest to excite [48].

At slightly higher frequencies, the out-of-plane ZO’ mode (Figure 7) can be

observed, which corresponds to interlayer motion along the Z-axis (a layer-breathing

mode). The other out-of-plane optic modes are characterised by the doubly degenerate

ZO branch. At the Γ point, the interlayer coupling causes the LO and TO modes to

split into two doubly-degenerate branches, both of which correspond to in-plane relative

motion of atoms. With the exception of the ZA and ZO’ modes, all the frequency

branches have symmetry-imposed degeneracy at Γ (Figure 6).

Figure 8 compares the phonon dispersions of the two stacking modes. Both stacking

configurations have similar mode characters, although differences emerge at the zone-

centre.

For the AA system, a small phonon instability is observed at the Γ-point, which is

denoted by an imaginary mode (ν = i1.04 THz). This indicates that the AA-system is

dynamically unstable, and prefers to adopt the AB-stacking configuration, in accordance

with the free energies in Figure 5. As expected, the imaginary mode is a TA branch,

which corresponds to the shear displacement of the layers with respect to one another.

The ZA mode also shows instabilities in the vicinity of the zone-center, but has zero

frequency at Γ.

The ZO’ breathing mode of AA-stacked bilayer graphene is located in a similar

frequency range to the corresponding mode in AB graphene, at ν = 2.16 and ν = 2.25
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Figure 6. Phonon dispersion of AB-stacked bilayer graphene computed within the

harmonic approximation (solid line). The unit cell contains four carbon atoms, leading

to three acoustic (A) and 3N − 3 = 9 optical (O) phonon branches. The calculated

dispersions are compared to the in-plane phonon dispersion of graphite obtained from

inelastic x-ray scattering [45] (red dots). The phonon branches are marked with the

labels assigned to the Γ-point phonons.

THz, respectively. The biggest frequency differences are observed for the TO modes,

which in the AB system occurs at higher frequency than in the AA configuration, with

0.72 THz of difference. This is partly because the LO/TO is larger in the AA than the

AB system (0.57 and 0.18 THz, respectively).

Table 1 presents a summary of the zone-centre frequencies for the two stacking

configurations.

We note that the AA phonon dispersion does not correspond to that in [49],

where, in contrast to the present results, imaginary frequencies are not observed (with

calculations carried out using the Born-von-Karman model of lattice dynamics for in-

plane atomic coupling and the Lennard-Jones potential for interlayer coupling [49]).

The branches which originate from the out-of-plane modes at the Γ-point, i.e. ZA,

ZO’ and ZO, become degenerate at the K-point (Figure 8)). The in-plane LO and LA

phonon branches also meet at the K-point, giving rise to a doubly-degenerate phonon

band. It is also noteworthy that the dispersions of the out-of-plane modes behave

linearly around the K-point in AA-BLG, whereas those in AB-BLG show a parabolic-
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ZA ZO’

TA

Figure 7. Eigenvectores corresponding to the vibrations in AB-stacked bilayer

graphene. ZA and ZO’ correspond to the out-of-plane vibrations, while TA denotes

the degenerate in-plane transverse-acoustic modes.

Table 1. Frequencies (THz) of the Γ-point phonon modes in AB- and AA-stacked

bilayer graphene.

Mode ZA ZO’ TA LA ZO TO LO

AB 0.00 2.25 0.82 0.00 26.72 47.86 48.04

AA 0.00 2.16 ı 1.04 0.00 26.82 47.14 47.71

like dispersion similar to that suggested in [49]. Features in the electronic spectra near

the K-point in the two BLG systems are therefore also reflected in the phonon spectra

(c.f. Figures 2 and 8).

Further lattice-dynamics calculations were carried out to investigate the effect of

electric fields on the phonon dispersions (Figure 9). Non-analytical corrections to the

dynamical matrix at q → 0 were considered in all calculations. We find that the

dispersion of the AA system is relatively insensitive to the applied external bias, and

that for all applied fields the Γ-point instability persists.

In comparison, the low-frequency branches of the AB band-structure show a

significant response to the field (Figure 9.a). This effect results from the inclusion

of non-analytical corrections; when these corrections are not included, the dispersions
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Figure 8. Phonon dispersions of the AB- and AA-stacked bilayer graphene

systems computed with the harmonic approximation (blue solid and red dashed lines,

respectively). The right-hand panel shows the dispersion along the K-Γ path. The

phonon branches are denoted by the symbols of the Γ-point phonons, several of which

become degenerate at the K-point.

are relatively unaffected by the bias. The layer-breathing mode (ZO’) displays a

discontinuity at the Γ-point, with different frequencies for different directions of

approach. Moreover, the flexural-acoustic (ZA) mode shows instabilities in the vicinity

of the zone-centre, but continue to show zero frequency at the Γ-point. Since the long-

wave flexural mode has the lowest frequency, it is the easiest to excite [48] and is therefore

more sensitive to the bias. At the K-point (Figure 9, inset), as occurs for the electronic

band-structure the degeneracy of the out-of-plane modes split, with the magnitude of

the splitting depending on the size of the applied bias.

4. Conclusions

In summary, we have performed a detailed first-principles study of the effect of

applied fields on the electronic structure and lattice dynamics of bilayer graphene.

Application of an external field to the AB-stacked bilayer graphene system leads

to drastic changes in the electronic properties, leading to the opening of the gap and

asymmetry in the dispersion. This in turn induces in-plane inhomogeneities in the

charge distribution on the sublattices, and the Coulomb interaction between electrons

will thus cause a potential difference between the layers. Our results therefore show

that the electron density can be controlled by tuning the band-gap width and dispersion

asymmetry.
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Figure 9. Harmonic phonon dispersions of the AB- (a) and AA-stacking (b)

configurations of bilayer graphene under different applied bias. The right-hand panel

in (a) shows the dispersion along the K-Γ segment. The AA system shows doubly-

degenerate imaginary modes at the zone-center, which is consistent with the alternative

AB stacking being the most favourable arrangement. Non-analytical corrections have

been applied to the dispersions of both systems. The ZA and ZO’ modes on the AB-

BLG change significantly under bias, whereas the applied field has comparatively little

effect on the dispersion of the AA-BLG system. Electric fields are given in eV/Å.
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Spin-orbit coupling has a significant effect on the dispersion as short-range electron-

electron correlations become important. The Mexican-hat structure disappears under

low bias, and the energy gap decreases. At larger field strength, the asymmetry in

the dispersion persists, since the energy scale set by the Fermi-surface instability is

minimized.

On the other hand, the electronic structure of the AA system is relatively stable

under bias.

As for its electronic structure, applied fields cause the phonon dispersions of the

AB-stacked system to change significantly when non-analytical corrections for long-

range Coulomb interactions are taken into account. These corrections mainly affect the

lower-frequency out-of-plane ZA and ZO’ modes. The phonon dispersion of the AA

system shows degenerate imaginary modes at the Γ point, indicating the presence of a

phonon instability. The dispersion of this stacking configuration is relatively insensitive

to bias and does not change significantly in response to an applied field.

In order to obtain better consistency with available literature, we would need to go

beyond LDA functional. The ground-state is likely to have additional broken-symmetry

configurations, and the lifting of spin and valley degeneracies may depend on long-

range fluctuations, effects which are not well captured by local DFT functionals. For

example, in the literature it has been observed that the AA stacking configuration may

be stabilised by an excitonic gap [19]. To study such effects, one would need to resort

to the two-body Green function method (Bethe-Salpeter equation), a possibility which

we are currently exploring.
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Appendix A. Tight-Binding Hamiltonian

To study the effects of an applied electric field on bilayer graphene, we begin by

describing pure bilayer graphene system with Bernal stacking, considering only the tz
interlayer hopping amplitude, restricted to the nearest-neighbour carbon atoms. An

electric bias V = eEd is applied in the direction perpendicular to the layers, where e is

the electron charge, E the applied electric field, and d the interlayer spacing [2]. The

Fermi operators, written as:

akj = N−1
∑

n

eık·nanj bkj = N−1
∑

n

eık·nbnj (A.1)

represent plane-wave states with momentum k. The indices j refer to the layers in the

nth unit-cell, anj and bnj are operators referring to A- and B-type sites in the lattice

(figure 1), and N is the number of cells in a layer. A 4−spinor is formed by:

ψ†k =
(
a†k1, b

†
k1, a

†
k2, b

†
k2

)
. (A.2)

The Hamiltonian is given in the second-quantized form by:

H0 =
∑

k

ψ†kĤkψk (A.3)

where the matrix has the form:

Ĥk =




V
2

γk 0 tz
γ†k

V
2

0 0

0 0 −V
2

γk
tz 0 γ†k −V

2


 (A.4)

The term γk = t
∑

δ e
ık·δ is related to the in-plane hopping amplitude, t, over the

nearest-neighbour vectors δ and defined as t ≈ 3 according to experimental and first

principles calculations suggested in Refs. [50] and [51]). The variable ξk is defined as

~vF (k−K), with the Fermi velocity defined as vF = 3ta/2~ ≈ 10−6ms−1, and a being

the intra-layer distance between next-neighbour atoms of different sublattices and ~ the

Planck constant [2]. The interlayer hopping amplitude, tz, is related to t by the relation

tz = t/10 [50].

In the vicinity of the Dirac points ±K is defined by ±(4π/3
√

3a, 0) and γk ≈ ξke
ıϕk ,

with ϕk = tan−1 ky/(kx −Kx) [2]. After diagonalizing the matrix in Eq. A.4, and

considering that the dispersion in the vicinity of the Dirac point is defined along a circle

around each Dirac point, ξk ≡ ξ, with maximum radius defined as ~vF
√
K/a [2], we

obtain for the four bands:

ε1(ξ) = ± 1

2

√
2t2z + V 2 + 4ξ2 + 2

√
t4z + 4(t2z + V 2)ξ2

ε2(ξ) = ± 1

2

√
2t2z + V 2 + 4ξ2 − 2

√
t4z + 4(t2z + V 2)ξ2 (A.5)
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Figure A1. Low-energy tight-binding electronic band-structure of bilayer graphene

in the AB (a) and AA (b) stacking arrangements. Dispersions are calculated for

different intensities of V .

where ε1 and ε2 refer to the external and internal bands, respectively [2].

The bias-controlled gap will therefore result in:

εg = ± V

2
√

1 + (V
tz

)2
. (A.6)

For the AA-BLG, the calculations are similar, although the matrix takes the form:

Ĥk =




V
2

γk tz 0

γ†k
V
2

0 tz
tz 0 −V

2
γk

0 tz γ†k −V
2


 (A.7)

and hence the eigenenergies will result in

ε1(ξ) = ± 1

2

√
4t2z + V 2 + ξ

ε2(ξ) = ± 1

2

√
4t2z + V 2 − ξ. (A.8)
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Chapter 6

Conclusions and Perspective

Temos de fazer, o que devemos fazer, para depois fazer o que temos de fazer

Unknown author

Ab-initio calculations within the framework of density functional theory (DFT) can

yield high-quality results for a large variety of systems. However, DFT calculations are mostly

limited to observables related to the electronic ground-state, while phenomena that occur when

the system is perturbed, are often not correctly described.

Most theoretical calculations do not consider temperature effects; however, the study of

materials at high-temperature, in particular the dynamic and thermodynamic properties of

solids, requires accounting for the interatomic forces that atoms exert on each other, which

depend upon the interaction between phonons (lattice vibrations).

The work carried out for the present thesis project involved not only the computation

of the ground-state properties of materials, but we have also employed other techniques to

probe temperature effects on phase-changing materials, such as lattice dynamics. Within this

methodology it is possible to compute the structural properties as a function of temperature,

giving a first-principles estimate of the temperature dependence of the lattice volume, thermal-

expansion coefficient, and also thermoelastic properties [16].

In this sense, the anharmonic effects needed to account for thermal expansion are introduced

by the quasi-harmonic approximation (QHA), in which the thermal expansion of the crystal

lattice is obtained from the volume dependence of the phonon frequencies. However, it is also

important to mention that the QHA is only considered to be valid up to 2/3 of the melting

temperature, above which higher-order anharmonic effects become more prominent. We would

thus expect that the high-temperature properties obtained from the QHA to have an error

margin to some extent.

In this sense, molecular dynamics (MD) is an alternative method, proposed to treat the

dynamics of strongly anharmonic lattices. The MD method allows estimating the lattice an-
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harmonicity contribution in the structural instability in materials perturbed by extreme con-

ditions, such as high-temperatures. This could be of particular importance to unveil the

mechanisms of phase transitions; i.e., when the atomic displacements from the equilibrium

positions may become considerable [134, 135]. Thus the possibility of employing higher-order

phonon-phonon interactions (i.e., molecular dynamics) would come as an alternative to provide

further insights on the phase-transition of the materials studied during this thesis.

The perovskite crystal manifests a huge variety of properties, because the majority of cubic

perovskites are (dynamically) unstable, and the energy of the system is lowered mainly due to

structural distortions, passing through one or more phase transitions and, hence providing com-

plex phase diagrams. These properties include among others, ferroelectricity, ferromagnetism,

piezoelectricity, multiferroicity, metal-insulator transitions [136].

For the particular case of CsSnI3 further computations will be applied in order to destabilise

the Pnma structure, in an attempt to search for a ferroelectric ground-state phase. It has been

observed that by artificially removing the X+
5 mode for perovskite oxides, it was possible to

induce a ferroelectric ground-state. The X+
5 mode is responsible for the displacement of the

A-cation which accommodates the octahedra rotations. It has been argued that this would be

the mode responsible for suppressing ferroelectricity rather than the expected rotations [136].

It is therefore possible to apply the knowledge gained in our analysis of the Pnma structure

of CsSnI3 to probe for mechanisms which will allow for freezing the mode responsible for the

rattling of the Cs cation, which is most likely to occur for materials that are expected to have

large rotations [136]. These mechanisms may include external perturbations to the system,

such as pressure, electric fields, etc.

GeTe has at the same time the structural simplicity but a complex range of properties which

require several tools in order to study and understand these properties. From a microscopic

perspective, lattice dynamics allows one to study the nature of the phase transition, which is

still today a area of intense debate for this material. With many-body perturbation theory,

more specifically QSGW, allows one to yield an improved electronic-band structure and probe

the spin-splitting of the bands due to the spin-orbit interactions. From QSGW it was also

possible to extract further information regarding the dynamics of the Rashba splitting, crystal-

field splittings and effective masses, all as a function of the polar mode. From a macroscopic

perspective, the Landau theory of phase transition also allows bridging from the microscopic

perspective and provides a more complete overview of the paraelectric-to-ferroelectric phase

transition.

Moreover, it was possible to conclude that by applying pressure on the crystal structure of

GeTe, the ferroelctricity can be suppressed. This effect arises due to the confinement of the Ge
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atom at the centrosymmetric position. Further interest regarding the ferroelctric phase may

be considered by perturbing the system with external fields (electric and/or magnetic) and

observe the effects upon the spontaneous polarisation. For example, by applying an electric

field in the direction of the polarisation it may be possible to promote the stability of the cubic

phase.

Bilayer graphene is yet another system exhibiting structural simplicity, built with only four

atoms in the unit-cell, but presenting a panoply of complex properties. These are mostly

evidenced for the AB stacking environment, when an external bias is turned on. Not only is

it possible to tune the width of the band-gap, but special features emerge in the electronic

band-structure due to the variation of the electron density in the different sublattices.

Interest would thus lie in obtaining a phase diagram for the biased AB-system, for inter-

actions that fall off the methodology used in the present work. Resorting to other methods,

such as non-local functionals of the density (i.e. HSE06) or GW, it will be possible to obtain

a better description of the dynamic correlations and long-range fluctuations of the systems.

The AA-BLG cannot be overlooked as well, since the ground-state behaviour, with applied

bias is still not fully understood. It has been argued about the possibility of stabilising the

ground-state, through the opening of an excitonic gap, and coexistence of an antiferromagentic

ordering [137], features that cannot be observed within the LDA approach.

Moreover, interest also lies in employing third order phonon interactions to compute the

lattice thermal conductivity. Since the electric-field induces the opening of an electronic band-

gap for the AB system, leading to a semimetal-to-semiconductor phase transition, this effect

will thus alter the thermal conductivity between the unbiased and biased systems. For the

AA system, the phonon and electronic band-structure remain practically unchanged under

different biases. On the other hand, the thermal conductivity may be affected due to disorder

introduced in the system thus altering the scattering rate of the phonon-phonon collisions [138].

Another application for BLG is to further study the electron-phonon coupling mechanisms

near the Γ- and K-points. Mainly for the biased systems which should provide information

about the modifications of the phonon and electronic structure of BLG due to the applied

field.
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