96 research outputs found

    Anti-inflammatory activity of Chios mastic gum is associated with inhibition of TNF-alpha induced oxidative stress

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gum of Chios mastic (<it>Pistacia lentiscus var. chia) </it>is a natural antimicrobial agent that has found extensive use in pharmaceutical products and as a nutritional supplement. The molecular mechanisms of its anti-inflammatory activity, however, are not clear. In this work, the potential role of antioxidant activity of Chios mastic gum has been evaluated.</p> <p>Methods</p> <p>Scavenging of superoxide radical was investigated by electron spin resonance and spin trapping technique using EMPO spin trap in xanthine oxidase system. Superoxide production in endothelial and smooth muscle cells stimulated with TNF-Ī± or angiotensin II and treated with vehicle (DMSO) or mastic gum (0.1-10 Ī¼g/ml) was measured by DHE and HPLC. Cellular H<sub>2</sub>O<sub>2 </sub>was measured by Amplex Red. Inhibition of protein kinase C (PKC) with mastic gum was determined by the decrease of purified PKC activity, by inhibition of PKC activity in cellular homogenate and by attenuation of superoxide production in cells treated with PKC activator phorbol 12-myristate 13-acetate (PMA).</p> <p>Results</p> <p>Spin trapping study did not show significant scavenging of superoxide by mastic gum itself. However, mastic gum inhibited cellular production of superoxide and H<sub>2</sub>O<sub>2 </sub>in dose dependent manner in TNF-Ī± treated rat aortic smooth muscle cells but did not affect unstimulated cells. TNF-Ī± significantly increased the cellular superoxide production by NADPH oxidase, while mastic gum completely abolished this stimulation. Mastic gum inhibited the activity of purified PKC, decreased PKC activity in cell homogenate, and attenuated superoxide production in cells stimulated with PKC activator PMA and PKC-dependent angiotensin II in endothelial cells.</p> <p>Conclusion</p> <p>We suggest that mastic gum inhibits PKC which attenuates production of superoxide and H<sub>2</sub>O<sub>2 </sub>by NADPH oxidases. This antioxidant property may have direct implication to the anti-inflammatory activity of the Chios mastic gum.</p

    Metabolic Syndrome as the First Stage of Eldership; the Beginning of Real Aging

    Get PDF
    The history of active worldwide scientific research on mechanisms of aging and the age-associated diseases counts more than five decades. Of these, among the numerous theories of aging, at least 50Ā years dominated the free radical theory of aging. Since mitochondria were found to be the major producers of free radicals, the research on aging became largely centered on mitochondria. At the end of 80s of the 20th century, physicians have established a new nosological entity named ā€œMetabolic syndromeā€ comprising several simultaneously existing symptoms and risk factors, which increase with age to 47% in men and 64% for women. The diagnosis of metabolic syndrome (MetS) requires simultaneous presence of at least three out of five medical conditions: visceral obesity, hypertension, high blood sugar, insulin resistance, low serum high-density lipoprotein accompanied with high serum triglycerides. However, from the beginning of the definition of MetS there was, and still is, a rather lovely debate, which of the symptoms must be considered as the main one. In spite of the enormous number of publications on both mechanisms of aging and MetS, there was relatively small progress in understanding the fundamental processes in these closely related problems. On the contrary, the mitochondrial free radical theory was found to be wrong in its current paradigms. In this Chapter we will discuss recent discoveries and hypotheses which open new perspectives in both theoretical and practical approaches to the problems of aging and MetS. We will show how aging and development of MetS are closely related to each other and the normal ontogenesis of human beings. Why men and women have different rates of aging and mechanisms of transition to MetS. We state that MetS is not just a cluster of symptoms, but one of the last steps of individual ontogenesis, namely the first step of eldership when the aging rate may increase manifold

    Coupling of phagocytic NADPH oxidase activity and mitochondrial superoxide production

    Get PDF
    Superoxide radical plays an important role in redox cell signaling and physiological processes; however, overproduction of superoxide or insufficient activity of antioxidants leads to oxidative stress and contributes to the development of pathological conditions such as endothelial dysfunction and hypertension. Meanwhile, the studies of superoxide in biological systems represent unique challenges associated with short lifetime of superoxide, insufficient reactivity of the superoxide probes, and lack of site-specific detection of superoxide. In this work we have developed 15N-and deuterium-enriched spin probe 15N-CAT1H for high sensitivity and site-specific detection of extracellular superoxide. We have tested simultaneous tracking of extracellular superoxide by 15N-CAT1H and intramitochondrial superoxide by conventional 14N-containing spin probe mitoTEMPO-H in immune cells isolated from spleen, splenocytes, under basal conditions or stimulated with inflammatory cytokines IL-17A and TNFĪ±, NADPH oxidase activator PMA, or treated with inhibitors of mitochondrial complex I rotenone or complex III antimycin A. 15N-CAT1H provides two-fold increase in sensitivity and improves detection since EPR spectrum of 15N-CAT1 nitroxide does not overlap with biological radicals. Furthermore, concurrent use of cell impermeable 15N-CAT1H and mitochondria-targeted 14N-mitoTEMPO-H allows simultaneous detection of extracellular and mitochondrial superoxide. Analysis of IL-17A- and TNFĪ±-induced superoxide showed parallel increase in 15N-CAT1 and 14N-mitoTEMPO signals suggesting coupling between phagocytic NADPH oxidase and mitochondria. The interplay between mitochondrial superoxide production and activity of phagocytic NADPH oxidase was further investigated in splenocytes isolated from Sham and angiotensin II infused C57Bl/6J and Nox2KO mice. Angiotensin II infusion in wild-type mice increased the extracellular basal splenocyte superoxide which was further enhanced by complex III inhibitor antimycin A, mitochondrial uncoupling agent CCCP and NADPH oxidase activator PMA. Nox2 depletion attenuated angiotensin II mediated stimulation and inhibited both extracellular and mitochondrial PMA-induced superoxide production. These data indicate that splenocytes isolated from hypertensive angiotensin II-infused mice are ā€œprimedā€ for enhanced superoxide production from both phagocytic NADPH oxidase and mitochondria. Our data demonstrate that novel 15N-CAT1H provides high sensitivity superoxide measurements and combination with mitoTEMPO-H allows independent and simultaneous detection of extracellular and mitochondrial superoxide. We suggest that this new approach can be used to study the site-specific superoxide production and analysis of important sources of oxidative stress in cardiovascular conditions

    Role of the T cell in the genesis of angiotensin IIā€“induced hypertension and vascular dysfunction

    Get PDF
    Hypertension promotes atherosclerosis and is a major source of morbidity and mortality. We show that mice lacking T and B cells (RAG-1āˆ’/āˆ’ mice) have blunted hypertension and do not develop abnormalities of vascular function during angiotensin II infusion or desoxycorticosterone acetate (DOCA)ā€“salt. Adoptive transfer of T, but not B, cells restored these abnormalities. Angiotensin II is known to stimulate reactive oxygen species production via the nicotinamide adenosine dinucleotide phosphate (NADPH) oxidase in several cells, including some immune cells. Accordingly, adoptive transfer of T cells lacking the angiotensin type I receptor or a functional NADPH oxidase resulted in blunted angiotensin IIā€“dependent hypertension and decreased aortic superoxide production. Angiotensin II increased T cell markers of activation and tissue homing in wild-type, but not NADPH oxidaseā€“deficient, mice. Angiotensin II markedly increased T cells in the perivascular adipose tissue (periadventitial fat) and, to a lesser extent the adventitia. These cells expressed high levels of CC chemokine receptor 5 and were commonly double negative (CD3+CD4āˆ’CD8āˆ’). This infiltration was associated with an increase in intercellular adhesion molecule-1 and RANTES in the aorta. Hypertension also increased T lymphocyte production of tumor necrosis factor (TNF) Ī±, and treatment with the TNFĪ± antagonist etanercept prevented the hypertension and increase in vascular superoxide caused by angiotensin II. These studies identify a previously undefined role for T cells in the genesis of hypertension and support a role of inflammation in the basis of this prevalent disease. T cells might represent a novel therapeutic target for the treatment of high blood pressure

    Hypertension and increased endothelial mechanical stretch promote monocyte differentiation and activation: roles of STAT3, interleukin 6 and hydrogen peroxide

    Get PDF
    Aims: Monocytes play an important role in hypertension. Circulating monocytes in humans exist as classical, intermediate and non-classical forms. Monocyte differentiation can be influenced by the endothelium, which in turn is activated in hypertension by mechanical stretch. We sought to examine the role of increased endothelial stretch and hypertension on monocyte phenotype and function. Methods and Results: Human monocytes were cultured with confluent human aortic endothelial cells undergoing either 5% or 10% cyclical stretch. We also characterized circulating monocytes in normotensive and hypertensive humans. In addition, we quantified accumulation of activated monocytes and monocyte-derived cells in aortas and kidneys of mice with Angiotensin II-induced hypertension. Increased endothelial stretch enhanced monocyte conversion to CD14++CD16+ intermediate monocytes and monocytes bearing the CD209 marker and markedly stimulated monocyte mRNA expression of interleukin (IL)-6, IL-1Ī², IL-23, chemokine (C-C motif) ligand 4 and tumor necrosis factor Ī±. STAT3 in monocytes was activated by increased endothelial stretch. Inhibition of STAT3, neutralization of IL-6 and scavenging of hydrogen peroxide prevented formation of intermediate monocytes in response to increased endothelial stretch. We also found evidence that nitric oxide inhibits formation of intermediate monocytes and STAT3 activation. In vivo studies demonstrated that humans with hypertension have increased intermediate and non-classical monocytes and that intermediate monocytes demonstrate evidence of STAT3 activation. Mice with experimental hypertension exhibit increased aortic and renal infiltration of monocytes, dendritic cells and macrophages with activated STAT3. Conclusions: These findings provide insight into how monocytes are activated by the vascular endothelium during hypertension. This is likely in part due to a loss of nitric oxide signaling and increased release of IL-6 and hydrogen peroxide by the dysfunctional endothelium and a parallel increase in STAT activation in adjacent monocytes. Interventions to enhance bioavailable nitric oxide, reduce IL-6 or hydrogen peroxide production or to inhibit STAT3 may have anti-inflammatory roles in hypertension and related conditions

    Critical Role of Mitochondrial Fatty Acid Metabolism in Normal Cell Function and Pathological Conditions

    No full text
    There is a ā€œpopularā€ belief that a fat-free diet is beneficial, supported by the scientific dogma indicating that high levels of fatty acids promote many pathological metabolic, cardiovascular, and neurodegenerative conditions. This dogma pressured scientists not to recognize the essential role of fatty acids in cellular metabolism and focus on the detrimental effects of fatty acids. In this work, we critically review several decades of studies and recent publications supporting the critical role of mitochondrial fatty acid metabolism in cellular homeostasis and many pathological conditions. Fatty acids are the primary fuel source and essential cell membrane building blocks from the origin of life. The essential cell membranes phospholipids were evolutionarily preserved from the earlier bacteria in human subjects. In the past century, the discovery of fatty acid metabolism was superseded by the epidemic growth of metabolic conditions and cardiovascular diseases. The association of fatty acids and pathological conditions is not due to their ā€œharmfulā€ effects but rather the result of impaired fatty acid metabolism and abnormal lifestyle. Mitochondrial dysfunction is linked to impaired metabolism and drives multiple pathological conditions. Despite metabolic flexibility, the loss of mitochondrial fatty acid oxidation cannot be fully compensated for by other sources of mitochondrial substrates, such as carbohydrates and amino acids, resulting in a pathogenic accumulation of long-chain fatty acids and a deficiency of medium-chain fatty acids. Despite popular belief, mitochondrial fatty acid oxidation is essential not only for energy-demanding organs such as the heart, skeletal muscle, and kidneys but also for metabolically ā€œinactiveā€ organs such as endothelial and epithelial cells. Recent studies indicate that the accumulation of long-chain fatty acids in specific organs and tissues support the impaired fatty acid oxidation in cell- and tissue-specific fashion. This work, therefore, provides a basis to challenge these established dogmas and articulate the need for a paradigm shift from the ā€œpathogenicā€ role of fatty acids to the critical role of fatty acid oxidation. This is important to define the causative role of impaired mitochondrial fatty acid oxidation in specific pathological conditions and develop novel therapeutic approaches targeting mitochondrial fatty acid metabolism

    Cardiolipin, Perhydroxyl Radicals, and Lipid Peroxidation in Mitochondrial Dysfunctions and Aging

    No full text
    Mitochondrial dysfunctions caused by oxidative stress are currently regarded as the main cause of aging. Accumulation of mutations and deletions of mtDNA is a hallmark of aging. So far, however, there is no evidence that most studied oxygen radicals are directly responsible for mutations of mtDNA. Oxidative damages to cardiolipin (CL) and phosphatidylethanolamine (PEA) are also hallmarks of oxidative stress, but the mechanisms of their damage remain obscure. CL is the only phospholipid present almost exclusively in the inner mitochondrial membrane (IMM) where it is responsible, together with PEA, for the maintenance of the superstructures of oxidative phosphorylation enzymes. CL has negative charges at the headgroups and due to specific localization at the negative curves of the IMM, it creates areas with the strong negative charge where local pH may be several units lower than in the surrounding bulk phases. At these sites with the higher acidity, the chance of protonation of the superoxide radical (O2ā€¢), generated by the respiratory chain, is much higher with the formation of the highly reactive hydrophobic perhydroxyl radical (HO2ā€¢). HO2ā€¢ specifically reacts with the double bonds of polyunsaturated fatty acids (PUFA) initiating the isoprostane pathway of lipid peroxidation. Because HO2ā€¢ is formed close to CL aggregates and PEA, it causes peroxidation of the linoleic acid in CL and also damages PEA. This causes disruption of the structural and functional integrity of the respirosomes and ATP synthase. We provide evidence that in elderly individuals with metabolic syndrome (MetS), fatty acids become the major substrates for production of ATP and this may increase several-fold generation of O2ā€¢ and thus HO2ā€¢. We conclude that MetS accelerates aging and the mitochondrial dysfunctions are caused by the HO2ā€¢-induced direct oxidation of CL and the isoprostane pathway of lipid peroxidation (IPLP). The toxic products of IPLP damage not only PEA, but also mtDNA and OXPHOS proteins. This results in gradual disruption of the structural and functional integrity of mitochondria and cells

    Role of mitochondrial oxidative stress in hypertension

    No full text
    • ā€¦
    corecore