183 research outputs found

    Reproducibility of quantitative (R)-[11C]verapamil studies

    Get PDF
    Background P-glycoprotein [Pgp] dysfunction may be involved in neurodegenerative diseases, such as Alzheimer's disease, and in drug resistant epilepsy. Positron emission tomography using the Pgp substrate tracer (R)-[11C]verapamil enables in vivo quantification of Pgp function at the human blood-brain barrier. Knowledge of test-retest variability is important for assessing changes over time or after treatment with disease-modifying drugs. The purpose of this study was to assess reproducibility of several tracer kinetic models used for analysis of (R)-[11C]verapamil data. Methods Dynamic (R)-[11C]verapamil scans with arterial sampling were performed twice on the same day in 13 healthy controls. Data were reconstructed using both filtered back projection [FBP] and partial volume corrected ordered subset expectation maximization [PVC OSEM]. All data were analysed using single-tissue and two-tissue compartment models. Global and regional test-retest variability was determined for various outcome measures. Results Analysis using the Akaike information criterion showed that a constrained two-tissue compartment model provided the best fits to the data. Global test-retest variability of the volume of distribution was comparable for single-tissue (6%) and constrained two-tissue (9%) compartment models. Using a single-tissue compartment model covering the first 10 min of data yielded acceptable global test-retest variability (9%) for the outcome measure K1. Test-retest variability of binding potential derived from the constrained two-tissue compartment model was less robust, but still acceptable (22%). Test-retest variability was comparable for PVC OSEM and FBP reconstructed data. Conclusion The model of choice for analysing (R)-[11C]verapamil data is a constrained two-tissue compartment model

    Impact of New Scatter Correction Strategies on High-Resolution Research Tomograph Brain PET Studies

    Get PDF
    The aim of this study is to evaluate the impact of different scatter correction strategies on quantification of high-resolution research tomograph (HRRT) data for three tracers covering a wide range in kinetic profiles. Healthy subjects received dynamic HRRT scans using either (R)-[C-11]verapamil (n = 5), [C-11]raclopride (n = 5) or [C-11]flumazenil (n = 5). To reduce the effects of patient motion on scatter scaling factors, a margin in the attenuation correction factor (ACF) sinogram was applied prior to 2D or 3D single scatter simulation (SSS). Some (R)-[C-11]verapamil studies showed prominent artefacts that disappeared with an ACF-margin of 10 mm or more. Use of 3D SSS for (R)-[C-11]verapamil showed a statistically significant increase in volume of distribution compared with 2D SSS (p 0.05). When there is a patient motion-induced mismatch between transmission and emission scans, applying an ACF-margin resulted in more reliable scatter scaling factors but did not change (and/or deteriorate) quantification

    Quantification of the novel N-methyl-D-aspartate receptor ligand [11C]GMOM in man

    Get PDF
    [11C]GMOM (carbon-11 labeled N-(2-chloro-5-thiomethylphenyl)-N0-(3-[11C]methoxy-phenyl)-N0-methylguanidine) is a PET ligand that binds to the N-methyl-D-aspartate receptor with high specificity and affinity. The purpose of this first in human study was to evaluate kinetics of [11C]GMOM in the healthy human brain and to identify the optimal pharmacokinetic model for quantifying these kinetics, both before and after a pharmacological dose of S-ketamine. Dynamic 90 min [11C]GMOM PET scans were obtained from 10 subjects. In six of the 10 subjects, a second PET scan was performed following an S-ketamine challenge. Metabolite corrected plasma input functions were obtained for all scans. Regional time activity curves were fitted to various single- and two-tissue compartment models. Best fits were obtained using a two-tissue irreversible model with blood volume parameter. The highest net influx rate (Ki) of [11C]GMOM was observed in regions with high N-methyl-D-aspartate receptor density, such as hippocampus and thalamus. A significant reduction in the Ki was observed for the entire brain after administration of ketamine, suggesting specific binding to the N-methyl-D-aspartate receptors. This initial study suggests that the [11C]GMOM could be used for quantification of N-methyl-D-aspartate receptors

    Repeatability of parametric methods for [F-18]florbetapir imaging in Alzheimer's disease and healthy controls:A test-retest study

    Get PDF
    Accumulation of amyloid beta (Aβ) is one of the pathological hallmarks of Alzheimer’s disease (AD), which can be visualized using [18F]florbetapir positron emission tomography (PET). The aim of this study was to evaluate various parametric methods and to assess their test-retest (TRT) reliability. Two 90 min dynamic [18F]florbetapir PET scans, including arterial sampling, were acquired (n = 8 AD patient, n = 8 controls). The following parametric methods were used; (reference:cerebellum); Logan and spectral analysis (SA), receptor parametric mapping (RPM), simplified reference tissue model2 (SRTM2), reference Logan (rLogan) and standardized uptake value ratios (SUVr(50–70)). BPND+1, DVR, VT and SUVr were compared with corresponding estimates (VT or DVR) from the plasma input reversible two tissue compartmental (2T4k_VB) model with corresponding TRT values for 90-scan duration. RPM (r2 = 0.92; slope = 0.91), Logan (r2 = 0.95; slope = 0.84) and rLogan (r2 = 0.94; slope = 0.88), and SRTM2 (r2 = 0.91; slope = 0.83), SA (r2 = 0.91; slope = 0.88), SUVr (r2 = 0.84; slope = 1.16) correlated well with their 2T4k_VB counterparts. RPM (controls: 1%, AD: 3%), rLogan (controls: 1%, AD: 3%) and SUVr(50–70) (controls: 3%, AD: 8%) showed an excellent TRT reliability. In conclusion, most parametric methods showed excellent performance for [18F]florbetapir, but RPM and rLogan seem the methods of choice, combining the highest accuracy and best TRT reliability

    Synthesis and Evaluation of New Fluorine-18 Labeled Verapamil Analogs To Investigate the Function of P-Glycoprotein in the Blood-Brain Barrier

    Get PDF
    P-glycoprotein is an efflux transporter located in the blood brain barrier. (R)-[C-11]Verapamil is widely used as a PET tracer to investigate its function in patients with epilepsy, Alzheimer's disease, and other neurodegenerative diseases. Currently it is not possible to use this successful tracer in clinics without a cyclotron, because of the short half-life of carbon-11. We developed two new fluorine-18 labeled (R)-verapamil analogs, with the benefit of a longer half-life. The synthesis of (R)-N[F-18]fluoroethylverapamil ([F-18]1) and (R)-O-[F-18]fluoroethylnorverapamil ([F-18]2) has been described. [F-18]1 was obtained in reaction of (R)-norverapamil with the volatile [F-18]fluoroethyltriflate acquired from bromoethyltosylate and a silver trilate column with a radiochemical yield of 2.7% +/- 1.2%. [F-18]2 was radiolabeled by direct fluorination of precursor 13 and required final Boc-deprotection with TFA resulting in a radiochemical yield of 17.2% 9.9%. Both tracers, [F-18]1 and [F-18]2, were administered to Wistar rats, and blood plasma and brain samples were analyzed for metabolic stability. Using [F-18] 1 and [F-18]2, PET scans were performed in Wistar rats at baseline and after blocking with tariquidar, showing a 3.6-and 2.4-fold increase in brain uptake in the blocked rats, respectively. In addition, for both [F-18]1 and [F-18]2, PET scans in Mdri1a/b((-1-)), Bcrpl((-1-)), and WT mice were acquired, in which [F-18]2 showed a more specific brain uptake in MdrIa/b((-1-)) mice and no increased signal in Bcrpl((-/-)) mice. [F-18]2 was selected as the best performing tracer and should be evaluated further in clinical studies

    Improving metabolic stability of fluorine-18 labeled verapamil analogs

    Get PDF
    INTRODUCTION: Fluorine-18 labeled positron emission tomography (PET) tracers were developed to obtain more insight into the function of P-glycoprotein (P-gp) in relation to various conditions. They allow research in facilities without a cyclotron as they can be transported with a half-life of 110 min. As the metabolic stability of previously reported tracers [18F]1 and [18F]2 was poor, the purpose of this study was to improve this stability using deuterium substitution, creating verapamil analogs [18F]1-d4, [18F]2-d4, [18F]3-d3 and [18F]3-d7. METHODS: The following deuterium containing tracers were synthesized and evaluated in mice and rats: [18F]1-d4, [18F]2-d4, [18F]3-d3 and [18F]3-d7. RESULTS: The deuterated analogs [18F]2-d4, [18F]3-d3 and [18F]3-d7 showed increased metabolic stability compared with their non-deuterated counterparts. The increased metabolic stability of the methyl containing analogs [18F]3-d3 and [18F]3-d7 might be caused by steric hindrance for enzymes. CONCLUSION: The striking similar in vivo behavior of [18F]3-d7 to that of (R)-[11C]verapamil, and its improved metabolic stability compared with the other fluorine-18 labeled tracers synthesized, supports the potential clinical translation of [18F]3-d7 as a PET radiopharmaceutical for P-gp evaluation

    [18F]FDG and [18F]FES PET/CT Imaging as a Biomarker for Therapy Effect in Patients with Metastatic ER+ Breast Cancer Undergoing Treatment with Rintodestrant

    Get PDF
    PURPOSE: Positron emission tomography (PET) with 16α-[18F]-fluoro-17β-estradiol ([18F]FES) allows assessment of whole body estrogen receptor (ER) expression. The aim of this study was to investigate [18F]fluorodeoxyglucose ([18F]FDG) and [18F]FES PET/CT imaging for response prediction and monitoring of drug activity in patients with metastatic ER+ breast cancer undergoing treatment with the selective estrogen receptor downregulator (SERD) rintodestrant.PATIENTS AND METHODS: In this trial (NCT03455270), PET/CT imaging was performed at baseline ([18F]FDG and [18F]FES), during treatment and at time of progression (only [18F]FES). Visual, quantitative and mutational analysis was performed to derive a heterogeneity score (HS) and assess tracer uptake in lesions, in relation to the mutation profile. The primary outcome was progression-free survival (PFS).RESULTS: The HS and PFS in the entire group did not correlate (n=16, Spearman's rho, P=0.06), but patients with a low HS (&lt;25.0%, n=4) had a PFS of &gt;5 months whereas patients with no [18F]FES uptake (HS 100.0%, n =3) had a PFS of &lt;2 months. [18F]FES uptake was not affected by ESR1 mutations. On-treatment [18F]FES PET/CT scans showed no [18F]FES uptake in any of the baseline [18F]FES positive lesions. At progression, [18F]FES uptake remained blocked in patients scanned ≤1-2 half-lives of rintodestrant whereas it restored in patients scanned ≥5 days after end of treatment.CONCLUSION: Absence of ER expression on [18F]FES PET is a predictor for no response to rintodestrant. [18F]FES uptake during treatment and at time of progression is useful to monitor the (reversible) effect of therapy and continued mode of action of SERDs.</p

    Kinetics and 28-day test-retest repeatability and reproducibility of [C-11]UCB-J PET brain imaging

    Get PDF
    [C-11]UCB-J is a novel radioligand that binds to synaptic vesicle glycoprotein 2A (SV2A). The main objective of this study was to determine the 28-day test-retest repeatability (TRT) of quantitative [C-11]UCB-J brain positron emission tomography (PET) imaging in Alzheimer's disease (AD) patients and healthy controls (HCs). Nine HCs and eight AD patients underwent two 60 min dynamic [C-11]UCB-J PET scans with arterial sampling with an interval of 28 days. The optimal tracer kinetic model was assessed using the Akaike criteria (AIC). Micro-/macro-parameters such as tracer delivery (K-1) and volume of distribution (V-T) were estimated using the optimal model. Data were also analysed for simplified reference tissue model (SRTM) with centrum semi-ovale (white matter) as reference region. Based on AIC, both 1T2k_V-B and 2T4k_V-B described the [C-11]UCB-J kinetics equally well. Analysis showed that whole-brain grey matter TRT for V-T, DVR and SRTM BPND were -2.2% +/- 8.5, 0.4% +/- 12.0 and -8.0% +/- 10.2, averaged over all subjects. [C-11]UCB-J kinetics can be well described by a 1T2k_V-B model, and a 60 min scan duration was sufficient to obtain reliable estimates for both plasma input and reference tissue models. TRT for V-T, DVR and BPND wa
    • …
    corecore