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Abstract 10 

Trabecular bone is a cellular composite material comprising primarily of mineral and organic phases 11 

and its mechanical response to loads is time-dependent. The contribution of the organic phase to the 12 

time-dependent behaviour of bone is not yet understood. We investigated the time-dependent 13 

response of demineralised trabecular bone through tensile multiple-load-creep-unload-recovery 14 

experiments. We found that demineralised trabecular bone’s time-dependent response is nonlinearly 15 

related to the applied stress levels - it stiffens with increased stress levels. Our results also indicated 16 

that the time-dependent behaviour is associated with the original bone volume ratio (BV/TV). 17 

Irrecoverable strain exists, even at the low strain levels, but are not associated with BV/TV. 18 

Furthermore, we found that the nonlinear viscoelastic model can accurately predict the time-19 

dependent behaviour of the trabecular bone’s organic phase, which can be incorporated together with 20 

the properties of mineral to generate a composite model of bone. This study will help to provide a 21 

better understanding of this natural composite material. 22 

 23 

Keywords: Bone volume ratio, recoverable and irrecoverable strain, nonlinear viscoelasticity, 24 

collagen, creep compliance.  25 
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1 Introduction 27 

Bone has been known to be a composite material which comprises of a mineral phase (mainly 28 

carbonated hydroxyapatite), organic phase (mostly type I collagen) and water assembled into a 29 

complex, hierarchical structure (Currey 1964). Currey (1969) also described the time-independent 30 

mechanical properties of bone (e.g. elastic modulus) as a function of its ash content and showed that 31 

it increases with increasing mineralisation. However, since bone is not an isotropic material its 32 

mineral density is not the only determinant of its elastic modulus. This was confirmed by Bonfield 33 

and Li (1967) who reported a variation in Young’s modulus with orientation. Later, a two-level 34 

hierarchical fibre-reinforced composite model of bone was developed by Katz (1980) to quantify the 35 

effect of orientation. Literature shows that the subject of developing the time-independent elastic 36 

properties of bone as a function of its constituents has been a subject of research for the past five 37 

decades. 38 

The organic phase of bone can be isolated through a demineralisation process, which generally 39 

comprises of submerging bone samples in a chemical solution, e.g. ethylenediaminetetraacetic acid 40 

(EDTA) or hydrochloric acid (HCl). One of the earliest studies on the mechanical properties of 41 

demineralised bone was by Burstein et al. (1975), who examined the tensile mechanical behaviour of 42 

progressively demineralised cortical bone obtained from bovine tibia by using HCl solution of 43 

varying concentration (0.005-0.5N); the authors showed that the ultimate stress, yield stress and 44 

Young’s modulus decreased progressively with increasing HCl solution concentration. Other studies 45 

on demineralised bone examined its elastic behaviour (Bowman et al. 1996; Catanese et al. 1999; 46 

Chen and McKittrick 2011; Novitskaya et al. 2011) and its cyclic behaviour (Novitskaya et al. 2013). 47 

A number of studies have shown a nonlinear load-deformation response from monotonic loading 48 

experiments (Bowman et al. 1996; Catanese et al. 1999; Novitskaya et al. 2011) and cyclic loading 49 

tests (Novitskaya et al. 2013; Xie et al. 2018b). However, studies that have considered time-50 

dependent behaviour of demineralised trabecular bone have been limited (Bowman et al. 1994).  51 

It has been widely recognised that the mechanical response of  bone, when subjected to loads, is not 52 

instantaneous, but is time-dependent (Bowman et al. 1994; Manda et al. 2016, 2017; Xie et al. 2017). 53 

However, the contribution of the constituent components of bone to its time-dependent behaviour has 54 

received little attention. Bowman et al. (1999) investigated the creep behaviour of fully demineralised 55 

cortical bone at varying normalised stresses and reported that the samples possessed three classical 56 

regimes of creep – primary, secondary and tertiary. Although this study considered varying load 57 
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levels, it achieved this by applying different load levels to different samples, i.e. each sample was 58 

subjected to a single load level only.  By conducting fully reversed cyclic tension-compression loads 59 

with varying load on demineralised trabecular bone samples, asymmetric behaviour – stiffening in 60 

tension and softening in compression – was observed (Xie et al. 2018b). However, this cyclic 61 

experimental protocol could not be used readily for the development of time-dependent constitutive 62 

models. 63 

In summary, while there have been a number of studies to examine the time-independent behaviour 64 

of demineralised bone (Bowman et al. 1999; Catanese et al. 1999; Chen and McKittrick 2011; 65 

Novitskaya et al. 2011), studies examining its time-dependent response are lacking (Bowman et al. 66 

1996; Xie et al. 2018b). Therefore, the primary objectives of this study were as follows. Firstly, to 67 

experimentally evaluate the time-dependent behaviour of demineralised trabecular bone by 68 

undertaking creep and recovery experiments at multiple load levels. Secondly, to describe the 69 

experimental results using time-dependent constitutive models. Lastly, by performing micro-70 

computed tomography (μCT) on the samples prior to demineralisation, evaluate how the response is 71 

influenced by the original bone volume ratio (BV/TV). 72 

2 Materials and methods 73 

2.1 Sample preparation 74 

Four fresh bovine proximal tibias under 30 months old when slaughtered were obtained from a local 75 

abattoir and stored at -20°C until utilised. The bones were allowed to thaw at room temperature 76 

before bone cores were extracted along its principal axis, using diamond coring tools with an inner 77 

diameter of 10.7 mm (Starlite, Rosement, IL, USA). A low speed rotating saw (Buehler, Germany) 78 

was used to create parallel sections and to trim growth plates if they were present. All coring and 79 

cutting was conducted in a water bath to reduce heat generation. The cylindrical bone samples (n=7) 80 

had a mean height of 20.4 ± 0.7 mm. 81 

Bone marrow was removed from each sample using a dental water jet (Interplak, Conair) with tap 82 

water at room temperature (Lievers et al. 2007). All the samples were then centrifuged at 2000 r.p.m 83 

for 2 hours to remove any residual marrow (Sharp et al. 1990). All the samples were scanned using 84 

µCT scanner (Skyscan 1172, Bruker, Kontich, Belgium) at a resolution of 17.22 µm and the system’s 85 

software (CTan, v1.13.5.1) was used to evaluate the bone volume to total volume ratio (BV/TV) of 86 

the bone, which was found to be in the range 15.5 - 37.6 %. Scanning parameters used were: source 87 
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voltage 54 kV, current 185 μA, exposure 885 ms with a 0.5 mm aluminium filter between the X-ray 88 

source and the sample. The image quality was improved by using 2 frames averaging. It should be 89 

noted that the BV/TV mentioned in this study relates to the bone volume ratio of the sample prior to 90 

demineralisation. 91 

2.2 Demineralisation 92 

After scanning, demineralisation was conducted by submerging samples in 20 ml 0.6N hydrochloric 93 

acid (HCl) at room temperature. The tubes were loaded into a wire rack to secure and vertically 94 

orientate them, before being placed in an ultrasonic tank. Ultrasonic agitation was applied at a 95 

frequency of 20kHz in order to increase the rate of demineralisation (Wallace et al. 2013). 96 

Hydrochloric acid has been successfully used for demineralising bone in previous studies (Burstein et 97 

al. 1975; Chen et al. 2011; Chen and McKittrick 2011; Castro-Ceseña et al. 2013; Xie et al. 2018b). 98 

The solution was changed daily (Chen and McKittrick 2011) for two weeks after which the 99 

completeness of demineralisation was verified using µCT scanning. All samples in this study were 100 

found to be fully demineralised in 2 weeks.  101 

2.3 Mechanical testing 102 

Samples were fixed into end-caps using bone cement (Simplex, Stryker, UK) with the assistance of a 103 

custom made alignment tool in order to minimise the end-artefacts during testing (Keaveny et al. 104 

1997). Bone cement had a Young’s modulus above 1 GPa which is much higher than the modulus of 105 

demineralised bone sample. Therefore, the strain response of bone cement layer can be assumed to be 106 

negligible in comparison to that of the sample. The effective length (17.4 ± 0.7 mm) of each sample 107 

was calculated as the exposed length of the sample between the end-caps plus half the length of the 108 

sample embedded within the end-caps (Keaveny et al. 1997). Each sample was placed in an epoxy 109 

tube filled with phosphate-buffered saline (PBS) solution to ensure that they remained hydrated 110 

during all stages of mechanical testing (Xie et al. 2018b) as shown in Fig. 1. 111 
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 112 

Figure 1: Schematic representation of loading set up. Samples are kept hydrated in a PBS solution throughout 113 

mechanical testing 114 

Each sample was first preconditioned by subjecting it to 10 cycles of tensile loading with an 115 

amplitude of 0.1 % apparent strain (Xie et al. 2017). The tensile multiple-load-creep-unload-recovery 116 

(MLCUR) experiment was conducted on 7 fully demineralised trabecular bone samples using Instron 117 

material testing machine (50N load cell, Model 3367) at room temperature. These tests comprised of 118 

cyclic loading in which samples were loaded, permitted to undergo creep, unloaded and then left to 119 

recover.  120 

Bone has been shown to yield at relatively isotropic strains as compared to stresses, and the yield 121 

strain is not dependent upon apparent elastic stiffness or density (Vahey et al. 1987; Levrero-122 

Florencio et al. 2016). Consequently strain-based loading cycles were applied. Loading cycles 123 

comprised static loading strain of 0.6 %, 0.8 %, 1.0 %, 1.5 %, 2.0 %, 2.5 %, 3.0 % and 3.5 % 124 

apparent static strains at the rate of 0.01s-1. Loading and unloading phases were under displacement 125 

control. The chosen strain rate has been successfully used previously to characterise the time-126 

dependent behaviour of trabecular bone (Manda et al. 2016, 2017; Xie et al. 2017). When the 127 

designated target strain was achieved, the corresponding load was maintained for 400 s, thereby 128 

permitting the sample to undergo creep. For a typical sample, (medium porosity, BV/TV = 26.8 %) 129 

corresponding load levels are shown in Fig. 2a. Each loading step was followed by an unloading step 130 

to a zero force at the same rate used for loading (0.01 s-1) and this zero force was maintained for 131 

1000s before proceeding to the next cycle (Fig. 2a). These durations for creep and recovery were 132 
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determined after initial pilot tests which showed that 400 s and 1000 s were more than sufficient for 133 

the samples to achieve a constant creep rate and for recovery curves to reach a plateau, respectively. 134 

The dataset for these demineralised trabecular bone samples under tensile multiple-load-creep-unload 135 

experimental are available from Edinburgh DataShare (Xie et al. 2018a).   136 
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 137 

138 

(a)                                                                                         (b)  139 

 140 

(c)                                                                                         (d)  141 

Figure 2: Response of a typical sample (BV/TV = 26.8%) subjected to tensile multiple-load-creep-unload-142 

recovery cycles. Load application (a); strain response (b); time-varying creep compliance (c) and recovery 143 

compliance (d) at varying stress levels. In each cycle, plateau load was held constant for 400 s and strain 144 

recovery was measured for another 1000s before next cycle application. The applied load in each cycle 145 

corresponds to the static strain of 0.6 %, 0.8 %, 1.0 %, 1.5 %, 2.0 %, 2.5 %, 3.0 % and 3.5 % 146 

  147 
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2.4 Material model 148 

We used both linear on nonlinear viscoelasticity models to describe the time-dependent behaviour of 149 

trabecular bone. The linear Kelvin-Voigt model or Prony series was employed to describe the time-150 

varying compliance, D(t), given by   151 

𝐷(𝑡) = 𝐷𝑔 + ∑ 𝐷𝑖[1 − exp (−𝑡/𝜏𝑖)]𝑛
𝑖=1                                                 (1) 152 

where 𝐷𝑔 is instantaneous compliance that describes the elastic response at time t=0, 𝐷𝑖 are transient 153 

retardation strengths associated with retardation times (𝜏𝑖). The nonlinear viscoelastic model was 154 

based on the approach of Park and Schapery (1999) in which the time-varying compliance includes 155 

nonlinear stress-dependent parameters, 𝑔0, 𝑔1, 𝑔2 and 𝛼𝜎 , and is given by  156 

𝐷(𝑡) = 𝑔𝑜𝐷𝑔 +  𝑔1𝑔2 ∑ 𝐷𝑖[1 − exp (−
𝑡

𝛼𝜎
/𝜏𝑖)]𝑛

𝑖=1                                      (2) 157 

Following the approach used for untreated (or non-demineralised) bone (Manda et al. 2017), where 158 

the unloading phase from the first cycle was assumed linear viscoelastic, the glassy or instantaneous 159 

compliance (𝐷𝑔), transient retardation strengths (𝐷𝑖) and retardation times (𝜏𝑖) were evaluated by 160 

minimising the errors between experimental measurements and Eq. 1. A three-term Prony series 161 

(n=3) was chosen which gave a fitting error of less than 0.3%. The parameter 𝑔0 is a nonlinear 162 

instantaneous compliance parameter, the transient nonlinear parameter 𝑔1 measures the effect of 163 

nonlinearity in the transient compliance, 𝑔2 describes the effect of loading rate on transient creep 164 

response, and 𝛼𝜎 is a time-shift factor. Thereafter, the stress dependent nonlinear parameters 𝑔2 and 165 

𝛼𝜎 in Eq. 2 were evaluated first by using the recovery strain response from cycles 2 to 8, followed by 166 

evaluation of parameters of 𝑔0 and 𝑔1 using the entire unloading phase from each cycle (Manda et al. 167 

2017). The nonlinear parameters obtained from each stress level were then expressed as smooth 168 

second-order polynomial functions of stresses. 169 

3 Results 170 

Without exception, each sample exhibited classical rapid primary and slow secondary regimes of 171 

creep behaviour across all stress levels. All 7 samples could be subjected to stress levels 172 

corresponding to the highest designated strain level (3.5 %) without tertiary creep or failure. 173 

 174 
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3.1 Experimental observations 175 

Figure 2b shows a strain response obtained from our tensile multiple-load-creep-unload-recovery 176 

(MLCUR) experiment for one typical sample (medium porosity, BV/TV = 26.8 %). For this sample 177 

the stress levels varied between 12.3 kPa and 106.9 kPa for the minimum and maximum applied 178 

strain levels of 0.6 % and 3.5 %, respectively. The time-varying compliance, defined as the ratio 179 

between time-varying strain and its corresponding stress level, was evaluated for both creep and 180 

recovery phases, denoted as 𝐷𝑡
𝑐𝑟𝑒 and 𝐷𝑡

𝑟𝑒𝑐 respectively. Both time-varying compliances were found 181 

to increase with time for all stress levels, as would be expected for a viscoelastic material (Fig. 2c 182 

and 2d). For linear viscoelastic materials, the time-varying compliance curves would be identical for 183 

all stress levels. However, the time-varying compliances, 𝐷𝑡
𝑐𝑟𝑒 and 𝐷𝑡

𝑟𝑒𝑐, derived for demineralised 184 

trabecular bone were found to vary with applied stress levels, indicating a nonlinear response. 185 

It was found that the time-varying compliance decreases with increasing stress levels (i.e. the curves 186 

at lower stress levels are above those at the higher stress levels), and this is true for both creep and 187 

recovery compliances (Fig 2c and 2d, respectively for the typical sample considered). This 188 

decreasing trend was followed by all the samples tested, which demonstrates elastic stiffening with 189 

increasing stress levels. It is also observed that the time-varying recovery compliance (𝐷𝑡
𝑟𝑒𝑐) was 190 

somewhat smaller than creep compliance (𝐷𝑡
𝑐𝑟𝑒) in each corresponding cycle. It was apparent that the 191 

creep compliance (𝐷𝑡
𝑐𝑟𝑒) showed an increasing trend with time for all loading cycles, whereas the 192 

recovery compliance (𝐷𝑡
𝑟𝑒𝑐) reached a plateau after around 400 s of recovery. This indicates that 193 

while irrecoverable strain develops in the loading and load holding phases, only viscoelastic strain is 194 

recovered during unloading and recovery phases. 195 

Compliance at the end of creep (t = 400 s) and recovery (t = 1400 s) from every loading cycle was 196 

obtained (for example see Fig. 2c and 2d for the sample with BV/TV = 26.8%) and denoted as 197 

𝐷𝑡=400
𝑐𝑟𝑒  and 𝐷𝑡=1400

𝑟𝑒𝑐 , respectively. This provided eight values of 𝐷𝑡=400
𝑐𝑟𝑒  and eight values 𝐷𝑡=1400

𝑟𝑒𝑐  for 198 

every sample. Figure 3 shows both compliances plotted against normalised stress (𝜎/𝜎𝑜) defined as 199 

the stress applied in each cycle divided by the stress applied in the first cycle (Manda et al. 2017) for 200 

all the samples tested. 201 

The creep compliance at t = 400 s (𝐷𝑡=400
𝑐𝑟𝑒 ) was in the range of 0.24 to 1.40 MPa-1. Recovery 202 

compliance at t = 1400 (𝐷𝑡=1400
𝑟𝑒𝑐 ) was in the range of 0.22 to 1.35 MPa-1 as shown in Fig. 3. The 203 

decreasing trend in compliances with increased normalised stress level was observed for all tested 204 
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samples. These results also showed that the samples with higher BV/TV have, in general, lower 205 

compliance in comparison to samples with lower BV/TV. However, samples with BV/TV = 33.8 % 206 

and 23.8 % were found to be exceptions to this trend which cannot be readily explained. We believe 207 

that the micro-architectural orientation may have played a much stronger role for these two 208 

demineralised samples. For untreated (non-demineralised) bone it has been shown that bone mineral 209 

density (or indirectly BV/TV) which is the primary method to identify bone quality, does not often 210 

correlate with mechanical behaviour well (Schuit et al. 2004) and the porous microarchitecture of 211 

bone is an important determinant of its mechanical behaviour (Homminga et al. 2002). For the 212 

sample with BV/TV=23.8%, which has an extremely low compliance, it is also possible that during 213 

the experiment excessive cement was used which permeated through the sample. Therefore, we have 214 

excluded this sample from subsequent analysis. 215 

Decreasing compliance with increased stress level indicates that the demineralised trabecular bone 216 

behaves in a nonlinear manner and it stiffens with increasing stress levels. Therefore, the use of a 217 

nonlinear constitutive model is required to describe the time-dependent behaviour of demineralised 218 

trabecular bone. 219 

 220 

Figure 3: Time-varying creep compliance at 400 s (𝐷𝑡=400 
𝑐𝑟𝑒 ) and recovery compliance at 1400 s (𝐷𝑡=1400 

𝑟𝑒𝑐 ) 221 

plotted against normalised stress for all 7 samples 222 
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The compliances from the recovery regimes become constant (recovery curve reaches a plateau) in a 223 

short time, which indicates that the viscoelastic strain is perhaps completely recovered in the 1000 s 224 

recovery time provided in all cycles. The strains present at the end of each cycle were therefore 225 

deemed irrecoverable. This irrecoverable strain was found to exist even at the end of the first loading 226 

cycle corresponding to the smallest load level. Figure 4 shows the irrecoverable strain along with its 227 

applied static strain for all the cycles and all the samples. A power-law relationship (r2 = 0.75, p < 228 

0.0001) was found between irrecoverable strain and applied static strain. However, no significant 229 

correlation was found between the irrecoverable strain and the original BV/TV (Fig. 4). It is clear 230 

that this irrecoverable strain increases with increasing applied load level for all demineralised 231 

trabecular bone samples. 232 

 233 

 234 

Figure 4: Irrecoverable strain at the end of each loading cycle for all the samples plotted against the applied 235 

instantaneous strain (where plateau force was held constant during the test) with a power-law relationship 236 

3.2 Constitutive model 237 

The instantaneous compliance (𝐷𝑔) was found to be in the range of 0.33 to 0.66 MPa-1 (Fig. 5). It 238 

was also found that 𝐷𝑔 decreases with increasing BV/TV with a power-law relationship (Fig. 5) 239 
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𝐷𝑔 = 7.4 x (BV/TV)-0.91 (r2 = 0.90)                                                 (3) 240 

 241 

Figure 5: Instantaneous compliance (Dg) plotted against BV/TV with a power law relationship. 242 

Figure 6a shows the variation for the typical sample considered (BV/TV = 26.8%), the values of 𝑔0 243 

and 𝑔2 decreased with increasing normalised stress (𝜎/𝜎𝑜), whereas the values of 𝑔1 and 𝛼𝜎 were 244 

almost constant (Fig. 6a). The product of 𝑔1𝑔2, which affects the transient response was also found to 245 

decrease with increasing normalised stress. These observations led to the choice of a second-order 246 

polynomial function to represent the nonlinear viscoelastic parameters as functions of normalised 247 

stress, which produced coefficients of determination of r2 = 0.93, 0.84, 0.99 and 0.96 for parameters 248 

𝑔0, 𝑔1, 𝑔2 and 𝛼𝜎 respectively (Fig. 6a). The decreasing trend of curves indicates that the 249 

demineralised trabecular bone stiffens with increased stress levels, and this elastic stiffening 250 

phenomenon was observed for all the samples tested. The nonlinear parameters for the 6 samples 251 

analysed are shown in Fig. 6b-6d and expressed as a second-order polynomial function with 252 

normalised stress. It can be seen that the variation described for the typical sample is largely followed 253 

by all. The decreasing trend of 𝑔0 and 𝑔1𝑔2 demonstrates that the demineralised trabecular bone 254 

sample experiences elastic stiffening in tension with increasing stress levels. The time-shift factor, 255 

𝛼𝜎, was found to remain almost constant for all samples. 256 

  257 
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 258 

 259 

(a)                                                                                         (b)  260 

 261 

(c)                                                                                         (d)  262 

Figure 6: Nonlinear viscoelastic parameters for the typical sample (a) and parameters for all 6 samples are 263 

expressed as second order polynomial functions of normalised stress: 𝑔0 (b), 𝑔1𝑔2 (c) and 𝛼𝜎 (d). 264 

The accuracy of linear viscoelastic (LVE) and nonlinear viscoelastic (NVE) constitutive models was 265 

compared with the experimental data. Figures 7a and b compare the experimentally obtained strain 266 

response to that obtained using LVE and NVE predictions for two representative samples with 267 

BV/TV = 15.5% and 37.6%. These samples had the lowest and highest BV/TV. For clarity, only the 268 

first 5 loading cycles are shown in Fig. 7. It can be seen that both models provide good predictions 269 

for the first loading cycle, however, at higher stress levels the NVE and LVE responses deviate from 270 
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the experimental curves. This is not unexpected as both LVE and NVE models are elastic models, 271 

with NVE taking stress dependent nonlinearity into account. We have shown that the samples have 272 

irrecoverable strains which elasticity models (linear or nonlinear) cannot incorporate. Figures 7a and 273 

b also show irrecoverable strains (denoted as VP or viscoplastic). The viscoplastic (VP) strain was 274 

evaluated by taking the difference between creep (which includes both viscoelastic and viscoplastic 275 

strains) and recovery curves (viscoelastic strains only). In Fig. 7c and d, the irrecoverable portion of 276 

the strain was removed from the experimental curve and it was then plotted against predictions of the 277 

LVE and NVE models. It is clear that the NVE constitutive model provides a more accurate 278 

prediction of the viscoelastic behaviour of demineralised bone, whereas the LVE constitutive model 279 

only gives a reasonable prediction at low loading cycles. The LVE model over-predicts the strain 280 

response at the higher stress levels, which also indicates that the demineralised trabecular bone 281 

undergoes elastic stiffening at higher stress levels.  282 



 16 

 283 

(a) (b)  284 

 285 

 (c)                                                                                         (d)  286 

Figure 7: The comparison of experimental strain response and constitutive model predictions. Experimental 287 

response and the predicted LVE, NVE strain response and viscoplastic strain (a & b), experimental strain 288 

response (with residual strain excluded) compared with predicted linear and nonlinear viscoelastic strain 289 

response (c & d), for two samples with lowest and highest BV/TV considered. 290 

 291 

4 Discussion 292 

As stated in the introduction, untreated (non-demineralised) trabecular bone has been studied 293 

extensively for its time-independent properties and there have also been a number of studies to 294 

investigate its time-dependent behaviour through creep, relaxation and dynamic loading. 295 
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Demineralised bone has been primarily examined for its time-independent properties and studies on 296 

its time-dependent behaviour have been extremely limited.  297 

Tensile multiple-load-creep-unload-recovery (MLCUR) experiments on demineralised trabecular 298 

bone undertaken in this study show that its response to mechanical forces is time-dependent and the 299 

strain includes recoverable and irrecoverable components, even at low-stress levels. The results also 300 

show that this time-dependent behaviour of demineralised trabecular bone varies nonlinearly with the 301 

applied stress. The nonlinear viscoelastic model can predict demineralised trabecular bone’s time-302 

dependent behaviour well if the irrecoverable strain is excluded. As found in previous time-303 

independent monotonic loading studies our results also show that demineralised trabecular bone 304 

stiffens at increased stress levels.  305 

The MLCUR experiments have been previously used to investigate untreated trabecular bone’s time-306 

dependent behaviour in compression (Manda et al. 2016, 2017; Xie et al. 2017). This study employed 307 

a similar approach to evaluate the time-dependent behaviour of demineralised trabecular bone in 308 

tension. We assumed that the first strain level of 0.6% to be in the linear elastic range. Bowman et al 309 

(1996) showed that demineralised bone does not yield up to an apparent strain of 10% in tension 310 

(Bowman et al. 1996) and that creep failure strains are in the range 8.8-21.1% (Bowman et al. 1999). 311 

In fact, Bowman et al. (1999) applied preconditioning cycles between 0-5% strain before applying a 312 

loading ramp to obtain linear region of the stress-strain curve. Predictions made using the LVE model 313 

indicate that this assumption is accurate for slightly higher strains as well (e.g. see second load cycle 314 

in Fig. 7).   315 

The observed creep compliances for demineralised trabecular bone in tension were in the range 0.22 316 

to 1.40 MPa-1 while the creep compliance in compression for untreated bone have been found to be in 317 

the range 1.08 ×10-3 to 4.17×10-3 MPa-1 (Manda et al. 2016). As expected, this indicates that the 318 

demineralised trabecular bone is much more flexible than untreated bone. From our experiments the 319 

long-term modulus of demineralised bone was calculated by taking reciprocal of the instantaneous 320 

compliance (Dg). The evaluated modulus was found to be of similar order as in previous studies for 321 

demineralised cortical bone (Burstein et al. 1975; Bowman et al. 1996; Catanese et al. 1999; 322 

Novitskaya et al. 2011) and demineralised trabecular bone (Chen et al. 2011; Xie et al. 2018b). 323 

However, above-cited studies were all limited to monotonic or cyclic loading.  324 
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Bone is recognised as time-dependent material in which the strain (or stress) response to a force (or 325 

displacement) is not instantaneous. Similar to untreated trabecular bone (Manda et al. 2017; Xie et al. 326 

2017), demineralised trabecular bone’s time-dependent behaviour is nonlinearly related to the applied 327 

stress level. Our MLCUR experiments show that at higher stress levels the strain response is smaller 328 

than what would be expected if a linear viscoelastic model were used. This indicates that 329 

demineralised bone stiffens at higher stress levels. This result is in agreement with previous 330 

monotonic loading studies in which the well-known J-shaped stress-strain curve has been observed, 331 

not only for demineralised bone (Bowman et al. 1996; Xie et al. 2018b) and actin networks 332 

(Schmoller et al. 2010) but also for untreated bone (Kim et al. 2011; Xie et al. 2017). The explanation 333 

for the J curve is that initially the kinks in the collagen are straightened out then the collagen fibres 334 

start carrying the loads.  335 

Bone volume ratio (BV/TV) or porosity of the bone has been used extensively and successfully to 336 

describe bone’s time-independent properties (Carter and Hayes 1977; Currey 1988; Gibson and 337 

Ashby 1999; Gibson 2005). Some previous study have also used BV/TV in the study of bone’s time-338 

dependent behaviour (Manda et al. 2016; Xie et al. 2017). This study shows that time-dependent 339 

response of demineralised bone is also strongly associated with BV/TV of the samples prior to 340 

demineralisation. Both creep and recovery compliance values largely follow the BV/TV trends (see 341 

Fig. 3). As would be expected, samples with higher BV/TV generally have lower compliance.  342 

Our experiments show that unloading results in some irreversible strains at the end of each loading 343 

cycle, which increases with increasing stress levels. However, we did not find an apparent 344 

relationship between irrecoverable strain and BV/TV. The post-elastic mechanical behaviour is likely 345 

to be much more strongly linked to micro-architecture than simply BV/TV of the samples. Reasons 346 

for apparent plastic behaviour of bone and demineralised bone have been discussed in previous 347 

studies. By conducting uniaxial nano-mechanical compression on cylindrical samples Tertuliano and 348 

Greer (2016) proposed that inter-fibrillar sliding through shear of extra-fibrillar matrix was the 349 

mechanism of plasticity in bone, which was also suggested by Gupta et al. (2005, 2006). This 350 

irrecoverable strain could also be due to inter-fibrillar sliding at nano-scale. This irrecoverable 351 

deformation in collagen needs to be emphasised, as it is generally ignored in two-phase composite 352 

models of bone (Lubarda et al. 2012). 353 

Composite models of bone can help illustrate the complex interrelationship between bone 354 

microstructure and material properties of constituents. In particular, bone is frequently modelled as a 355 
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two-phase composite, hydroxyapatite mineral crystals dispersed in an organic matrix. This study 356 

shows that the time-dependent behaviour of bone’s organic phase can be described using a nonlinear 357 

viscoelastic model, which provides a good prediction for recoverable (elastic) strain response at 358 

varying load levels. These developed models can be used in conjunction with the mechanical 359 

properties of bone’s mineral phase for evaluating the influence of the two phases on the time-360 

dependent mechanical response.  361 

This study suffers from a number of limitations. Firstly, all the tests were conducted at room 362 

temperature; creep behaviour has been reported to be temperature-dependent for bone (Bonfield and 363 

Li 1968; Bowman et al. 1998), so it is likely that the demineralised trabecular bone’s viscoelastic 364 

behaviour is also temperature-dependent. Secondly, it is not possible in practice to perform ideal 365 

creep-recovery experiments and in the tests conducted, the time interval to loading and unloading is 366 

finite (e.g. 1 s to reach 1% strain with our designated strain rate 0.01 s-1). Small viscoelastic 367 

deformations are likely to occur during loading and unloading.  368 

In conclusion, this study shows that the response of demineralised trabecular bone samples to 369 

mechanical forces is time-dependent and it is nonlinearly related to its applied stress levels – it 370 

stiffens with increased stress level. Some irrecoverable strain exists even at load cycles 371 

corresponding to small strains. Irrecoverable strain, however, is not related to a sample’s pre-372 

demineralised BV/TV. The developed nonlinear time-dependent constitutive model can be 373 

incorporated together with properties of the mineral phase to generate a composite model of bone.   374 
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Supplementary information  486 

 487 

Constitutive model:  488 

 489 

The nonlinear viscoelastic model was based on Manda et al. (2017) which used the 490 

Schapery’s nonlinear viscoelastic constitutive law (Shapery 1969). In this the strain 491 

response to a suddenly applied stress is given by 492 

 493 

𝜀(𝑡) = 𝑔0𝐷𝑔𝜎 + g1 ∫ Δ𝐷(𝜓𝑡 − 𝜓𝜏)
𝑑(𝑔2𝜎)

𝑑𝜏
𝑑𝜏

𝑡

0
                            (1) 494 

 495 

𝜓𝑡 =  ∫
𝑑𝜏′

𝛼𝜎(𝜏′)𝛼𝑇(𝜏′)𝛼𝑒(𝜏′)  

𝑡

𝑜
                                           (2) 496 

 497 

where 𝐷𝑔 is instantaneous compliance, 𝑔0, 𝑔1, 𝑔2 and 𝛼𝜎 are stress-dependent nonlinear 498 

viscoelastic parameters, 𝜎 is applied stress and 𝜓𝑡 is reduced time. Parameters 𝛼𝜎, 𝛼𝑇  499 

and  𝛼𝑒 are stress, temperature and other environment time-shift factors, respectively. The 500 

effects of temperature (𝛼𝑇) and other environment variables (𝛼𝑒) are not considered; 501 

consequently, these two parameters are unity. The transient compliance, Δ𝐷, in equation 502 

(1) is represented by Prony series as  503 

 504 

Δ𝐷(𝜓𝑡) =  ∑ 𝐷𝑛[1 − exp (−𝜓𝑡/τn)]𝑛
1                                 (3)  505 

 506 

where 𝐷𝑛 is nth coefficient of the Prony series associated with nth retardation time, 𝜏𝑛. 507 

Therefore, the nonlinear time-dependent compliance can be rewritten as 508 
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𝐷(𝑡) = 𝑔0𝐷𝑔 + 𝑔1𝑔2 ∑ 𝐷𝑛[1 − exp (−
𝑡

𝛼𝜎𝜏𝑛
)]𝑛

 1                             (1) 509 

This equation reduces to linear viscoelasticity equation if all the stress-dependent 510 

nonlinear parameters are unity.  511 

 512 

Parameters fitting:  513 

We assume that the first cycle (lowest strain) is linear viscoelastic. Therefore, 𝐷𝑔, 𝐷𝑛 and 514 

𝜏𝑛 were evaluated by minimising the errors between experimental measurement and the 515 

linear viscoelastic equation. Three Prony terms (n=3) were chosen after a number of 516 

fittings and we found that this gave fitting error of less than 0.3%.  517 

The nonlinear parameters, 𝑔2 and 𝛼𝜎 were first evaluated by using the recovery part of the 518 

experimental curve. Then the the nonlinear parameters 𝑔0 and 𝑔1 were evaluated by using 519 

the entire unloading phase from each cycle. The evaluated nonlinear parameters obtained 520 

from each stress level were then expressed as smooth second-order polynomial functions 521 

of stresses.  522 

 523 
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