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RESEARCH ARTICLE
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Abstract
Purpose: The aim of this study is to evaluate the impact of different scatter correction strategies
on quantification of high-resolution research tomograph (HRRT) data for three tracers covering a
wide range in kinetic profiles.
Procedures: Healthy subjects received dynamic HRRT scans using either (R)-[11C]verapamil
(n=5), [11C]raclopride (n=5) or [11C]flumazenil (n=5). To reduce the effects of patient motion on
scatter scaling factors, a margin in the attenuation correction factor (ACF) sinogram was applied
prior to 2D or 3D single scatter simulation (SSS).
Results: Some (R)-[11C]verapamil studies showed prominent artefacts that disappeared with an
ACF-margin of 10 mm or more. Use of 3D SSS for (R)-[11C]verapamil showed a statistically
significant increase in volume of distribution compared with 2D SSS (pG0.05), but not for
[11C]raclopride and [11C]flumazenil studies (p90.05).
Conclusions: When there is a patient motion-induced mismatch between transmission and
emission scans, applying an ACF-margin resulted in more reliable scatter scaling factors but did
not change (and/or deteriorate) quantification.

Key words: Positron emission tomography (PET), High-resolution research tomograph (HRRT),
Scatter correction, Scatter scaling factor, Patient motion, Single scatter simulation, ACF-margin

Introduction
The high-resolution research tomograph (HRRT; CTI/Siemens,
Knoxville, TN, USA) is a dedicated human brain positron
emission tomography (PET) scanner that consists of a smaller
bore (46.9 cm) and a longer axial field of view (FOV; 25.2 cm)
than current commercial PET scanners [1]. It has a spatial
resolution of 2 to 3 mm full width at half maximum (FWHM).
Due to its higher spatial resolution, it has the potential to provide

a more accurate reflection of true radioactivity distributions
compared with most clinically available PET/CT systems. In
recent years, there has been considerable progress in developing
more advanced data correction and reconstruction for the HRRT
[2–5]. However, the HRRT still suffers from inaccuracies in
scatter correction [6, 7]. The number of scattered events can
amount to 56 % of the total number of events [8]. Frequently,
scatter is estimated using a 2D single scatter simulation (SSS)
algorithm that originally has been developed for whole-body
PET imaging [9]. SSS is a computationally efficient method that
only models the contribution of single scatter events (i.e. thoseCorrespondence to: Ronald Boellaard; e-mail: r.boellaard@vumc.nl

http://crossmark.crossref.org/dialog/?doi=10.1007/s11307-015-0921-x&domain=pdf


that result from annihilation photon pairs in which a photon has
been scattered only once before being detected) and typically
uses tail fitting to match modelled scatter data with measured
data. 2D SSS only takes scatter coincidences in non-oblique
imaging planes into account. Later, 2D SSS was extended to 3D
SSS to incorporate scatter coincidences in oblique planes [2]. A
preliminary study by Hong et al. [10] indicated that, compared
with its 3D variant, 2D SSS overestimated scatter for brain regions
with low levels of tracer uptake (up to 25 % in-plane difference).
A phantom study confirmed that 2D SSS shows bias (5 % in the
centre of a cylindrical phantom) that disappears with 3D SSS [2].
However, the impact of 3D SSS on kinetic parameters derived
from dynamic brain studies has not been assessed yet.

As reported by Anton-Rodriguez et al. [6], HRRT brain
studies using (R)-[11C]verapamil, a substrate of the efflux
transporter P-glycoprotein (P-gp), may show prominent artefacts
in the lower part of the brain that are caused by patient motion.
This patient motion leads to a misalignment between transmis-
sion and emission data, resulting in incorrect tail fitting that, in
turn, causes an overestimation of scatter scaling factors. This
misalignment between emission and transmission data can be
corrected for by either using a motion tracking device [11] or
image-based motion correction methods [12]. Use of a motion
tracking device, however, requires additional hardware and
processing software that are not readily available at all imaging
sites. If themagnitude of patient motion is small enough, simpler
methods (without the need for additional hardware) may suffice
in order to avoid inaccuracies due to overestimation of scatter
scaling factors. The most recent version of the HRRT software
(version 1.3) allows users to specify an additional margin (in
voxels) in the attenuation correction factor (ACF) sinogram (so-
called ACF-margin, illustrated in Fig. 1). This ACF-margin is
used only for scatter scaling estimation and assures that this
estimation is less sensitive to a mismatch between transmission
and emission data [6]. A recent study [7] showed that this ACF-
margin did not result in visible artefacts in (R)-[11C]verapamil
HRRT brain studies. Nevertheless, effects on quantification and
the optimal ACF-margin enabling compensation for most of the
clinically observed patient motions in HRRT brain studies still
need to be determined.

The aim of this study was to evaluate the impact of an
ACF-margin in combination with both 3D and 2D SSS on
quantification of HRRT data for three tracers covering a
wide range in kinetic profiles, i.e. (R)-[11C]verapamil,
[11C]raclopride, a dopamine D2 receptor antagonist, and
[11C]flumazenil, an antagonist of the benzodiazepine site of
the γ-aminobutyric acid (GABAA)-receptor.

Materials and Methods

Subjects and Data Acquisition

A total of 15 healthy subjects received dynamic HRRT scans using
either (R)-[11C]verapamil (n=5), [11C]raclopride (n=5) or
[11C]flumazenil (n=5). The mean age (±SD) of the subjects was

61± 4, 27± 3 and 53± 16 years for (R)-[11C]verapamil,
[11C]raclopride and [11C]flumazenil, respectively. All studies were
approved by the Medical Ethics Review Committee of the VU
University Medical Center, and all subjects gave written informed
consent prior to scanning. One week prior to the PET scan, a
structural T1-weighted magnetic resonance (MR) image was
obtained for each subject using a SONATA 1.5T MR scanner
(Siemens Medical Solutions, Erlangen, Germany), which was used
for co-registration and volumes of interest (VOI) definition
purposes. For PET, first, a transmission scan was acquired using
a 137Cs point source, which was used for attenuation correction of
the subsequent emission scan. Next, a 60-min emission scan was
started in 3D acquisition mode simultaneously with an intravenous
injection of the tracer. To limit head movement, a head immobi-
lization device was used and subjects were instructed to refrain
from moving their head during the entire scan procedure. During
the emission scan, arterial blood was sampled continuously using
an on-line blood sampling device [13]. At set times (5, 10, 15, 20,
30, 40 and 60 min p.i.), continuous sampling was interrupted
briefly to collect manual blood samples. More details on the study
protocols can be found elsewhere [7, 14].

Image Reconstruction and Data Processing

Acquired list-mode PET emission data were histogrammed into 20
different time frames (1×15, 3×5, 3×10, 2×30, 3×60, 2×150, 2×
300 and 4×600 s) for all [11C]raclopride and (R)-[11C]verapamil
studies and into 16 time frames (4×15, 4×60, 2×150, 2×300 and
4×600 s) for all [11C]flumazenil studies. Sinograms were normal-
ized and corrected for scatter and random events, attenuation, decay
and dead time, and reconstructed using a resolution-modelled
ordinary Poisson ordered-subset expectation maximization algo-
rithm [15] using 12 iterations and 16 subsets [10]. Reconstructed
images had a matrix size of 256×256×207 voxels with an isotropic
voxel volume of 1.22 mm3. The default parameters for resolution
modelling were used [15]. Attenuation correction was performed
using a transmission total variation regularization algorithm as
described previously [3]. After reconstruction, no plane efficiency
correction factors were applied to the reconstructed images to
correct for a possible small lower sensitivity in the central planes
(typically observed when 2D SSS is used), because only minor
changes in sensitivity over the planes were observed (0.5±0.4 % on
average, maximum 4.0 %).

Scatter Correction

As mentioned above, head motion can introduce reconstruction
artefacts due to incorrect scatter scaling estimation. In the case of a
mismatch between emission and transmission data (or incorrect
segmentation of the skin or nose as air when using a maximum-a-
posteriori reconstruction algorithm), real emission lines of re-
sponses (LORs) can be misused for scatter scaling resulting in an
overestimation of scatter. In order to compensate for small levels of
patient motion, ACF-margins of 0, 2, 4, 6, 8, 10, 12 and 14 voxels
(i.e. up to 17 mm) were applied prior to scatter correction. The
placement of this ACF-margin is based on a threshold on ACF
voxels (by default 1.03) to determine non-attenuated sinogram bins
(i.e. lines of responses; LORs) outside the head (i.e. the
background) that are pure scatter (Fig. 1). ACF-margins were used
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only to estimate the scatter scaling, i.e. they were not used for
attenuation correction. Two types of scatter correction methods
were used, i.e. 2D and 3D SSS [9]. For comparison purposes, 3D
SSS was applied to all datasets, whereas 2D SSS was only applied
to datasets with a 0- and 10-mm (8 voxels) ACF-margin,
respectively.

Assessment of Patient Motion

The levels of patient motion that occurred during emission scan
was assessed using the motion QC tool [6] that is available in the
most recent version of the HRRT Software (version 1.3). This tool
makes use of the Automated Image Registration software package
(AIR version 5, University of California, Los Angeles) to estimate
the motion between a summed image of the first minute of the
emission scan and the images of the other emission time frames.
Note that this method is unable to detect motion in the first 60 s of
the emission scan. To assess the levels of patient motion between
transmission and emission data, the μ-map and the image of the last
time frame of the emission scan were co-registered using a rigid
registration method (VINCI software version 4.23, Max Planck
Institute for Neurological Research, Cologne, Germany) [16]. The
levels of patient motion per subject and per time frame were

calculated as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Δx2 þ Δy2 þ Δz2
p

, where Δx, Δy and Δz are the
displacements in the x, y and z direction, respectively.

Pharmacokinetic Analysis

For each subject, the MR image was co-registered automatically
onto the corresponding PET image (summed image from 15 to
60 min) using a rigid registration method (VINCI software version
4.23, Max Planck Institute for Neurological Research, Cologne,
Germany) [16]. Prior to pharmacokinetic analysis, VOIs were
generated using PVElab (version 2012, Neurobiology Research
Unit, Copenhagen, Denmark) [17] in combination with the
Hammers template [18]. In addition, statistical parametrical
mapping (SPM) (version 8, Institute of Neurology, London, UK)
was used to obtain segmentations of grey matter, white matter and
extracellular fluid from the MR images. Several VOIs were selected
depending on the uptake pattern of the tracer. For the (R)-
[11C]verapamil studies, selected VOIs were the hippocampus,
thalamus, striatum, amygdala, parahippocampus, fusiform gyrus
and cerebellum. The latter four regions clearly showed artefacts
caused by inaccurate scatter scaling. For [11C]raclopride studies,

the cerebellum, thalamus and striatum were selected, whilst the
frontal lobe, thalamus, striatum and brainstem (including pons)
were selected for [11C]flumazenil studies. Next, time activity curves
(TACs) were generated for each VOI.

Metabolite-corrected input functions were derived by processing
both data from the on-line blood sampler and manual arterial blood
samples. More details can be found in [19] for (R)-[11C]verapamil,
in [20] for [11C]raclopride and in [21] for [11C]flumazenil.
Metabolite-corrected input functions and grey matter TACs were
then used to derive the volume of distribution (VT) for each VOI. A
single-tissue compartment plasma-input model with blood volume
fraction correction was used for (R)-[11C]verapamil and
[11C]flumazenil [22, 23], whilst a reversible two-tissue compart-
ment plasma-input model with blood volume fraction parameter
was used for [11C]raclopride [24].

Quantitative Accuracy Assessment

Reconstructed images obtained with different ACF-margins were
compared with those obtained without an ACF-margin, using 3D
SSS during the reconstruction process. In addition, reconstructed
images obtained using 3D SSS were compared with those obtained
using 2D SSS, using a 10-mm ACF-margin during the reconstruc-
tion process. A Wilcoxon signed rank test (SPSS version 20,
Chicago, IL, USA) was used to verify whether an ACF-margin and/
or 3D SSS had a significant impact on VT values in several different
regions when compared with no or less ACF-margin and/or 2D
SSS. P values were considered statistically significant when they
were lower than 0.05.

Results

Assessment of Patient Motion

Table 1 reports the levels of patient motion per subject,
either observed between transmission and emission scans or
observed during the emission scan. There was no statistically
significant difference between patient motion observed
during the emission scans of different tracer studies as
determined by one-way ANOVA (F(2,12)=0.96, p=0.41
and F(2,12)=2.38, p=0.14 for the average and maximum
levels of patient motion over all time frames, respectively),
but there was a statistically significant difference in patient

Fig. 1 a, c ACF sinogram and b, d projection of a typical subject, c, d with or a, b without an applied ACF-margin of four
voxels.
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motion observed between transmission and emission scans
of different tracer studies (F(2,12)=5.64, p=0.02). A Tukey
post hoc test revealed that the patient motion observed
during (R)-[11C]verapamil studies was statistically signifi-
cantly higher (4.8±0.9 mm, p=0.03) compared to that
observed for [11C]raclopride and [11C]flumazenil studies
(2.9±1.0 and 2.9±1.1 mm, respectively). There were no
statistically significant differences between patient motion
observed during [11C]raclopride and [11C]flumazenil studies
(p=1.00).

Impact of an ACF-Margin Prior to Scatter Scaling
Estimation on VT

Figure 2 shows coronal and sagittal reconstructed activity
concentration images of three typical subjects, one for each
tracer. Images were reconstructed using both no ACF-
margin and a 10-mm ACF-margin (8 voxels) prior to scatter
scaling estimation using 3D SSS. Three out of five (R)-
[11C]verapamil studies showed prominent artefacts in the
lower part of the brain with a difference in reconstructed

Table 1. Amount of patient motion per subject (in mm)

Tracer Subject Mean over all subjects

1 2 3 4 5

Average motion during emission scan over all time frames (R)-
[11C]verapamil

1.8 2.1 3.4 2.2 5.2 3.0

[11C]raclopride 3.1 2.6 1.6 4.5 1.7 2.7
[11C]flumazenil 2.9 2.3 0.9 1.5 2.4 2.0

Maximum motion during emission scan over all time frames (R)-
[11C]verapamil

4.2 5.9 5.2 4.5 7.7 5.5

[11C]raclopride 10.0 5.2 3.7 7.7 2.7 5.9
[11C]flumazenil 4.2 2.7 2.2 2.9 4.6 3.3

Motion between transmission and emission data (R)-
[11C]verapamil

4.2 5.9 3.8 4.5 5.5 4.8

[11C]raclopride 2.0 4.5 3.3 2.1 2.7 2.9
[11C]flumazenil 3.2 2.2 1.7 2.9 4.6 2.9

Fig. 2 The effects of different ACF-margins prior to scatter scaling estimation on reconstructed activity concentrations (summed
from frame 5 to the last frame), illustrated for typical a (R)-[11C]verapamil, b [11C]raclopride and c [11C]flumazenil scans in coronal (left
panel) and sagittal views (middle panel). The ratio images (right panel) show the ratios of reconstructed activity concentration images
without an ACF-margin to those obtained using a 10-mm ACF-margin. The red arrows show an area where a prominent artefact
caused by a mismatch between emission and transmission data was located. The blue arrows indicate the same area. A significant
increment in reconstructed activity concentrations was observed when a 10-mm ACF-margin was applied.
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activity concentrations of up to 43 % between no ACF-
margin and a 10-mm ACF-margin (8 voxels). When using
an ACF-margin of 10 mm (8 voxels) or more, artefacts were
no longer visible with higher reconstructed activity concen-
trations in the artefact areas (Fig. 2). Moreover, for both
[11C]raclopride and [11C]flumazenil studies, all visually
apparent artefacts disappeared when an ACF-margin was
applied. Figure 3 shows mean VT (±SD) over all subjects for
different VOIs per tracer. For (R)-[11C]verapamil, increasing

the ACF-margin from 4.8 (4 voxels) to 10 mm (8 voxels)
resulted in a significant increase in VT of about 24 % for
those VOIs that were located in or near the prominent
artefact (i.e. amygdala, parahippocampal gyrus, fusiform
gyrus and cerebellum; pG0.05). On the other hand, there
was no further change in VT (p90.05) when the ACF-margin
was increased from 10 to 12 mm or more.

For [11C]raclopride, ACF-margins did not show significant
changes for any of the regions regardless how much margin

Fig. 3 Bar plots illustrating the effects of various ACF-margins prior to scatter scaling estimation on mean VT (pooled over five
subjects), together with SD, of selected VOIs for a (R)-[11C]verapamil, b [11C]raclopride and c [11C]flumazenil. Stars indicate
statistically significant differences in VT.
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was applied (change in VT was less than 5 % on average;
p90.05). The same effect was seen for [11C]flumazenil, where
changes in VT were less than 3 %, on average, for all VOIs.

Impact of 2D SSS Versus 3D SSS on VT

Figure 4 shows transaxial and sagittal reconstructed activity
concentration images of three typical subjects, one for each
tracer, reconstructed using 2D SSS and 3D SSS scatter
correction and a 10-mm ACF-margins. For (R)-[11C]verapamil,
all subjects showed 7±5 % higher reconstructed activity
concentrations for 3D SSS than for 2D SSS in the lower part
of the brain. Figure 5 shows the effects of 2D SSS and 3D SSS
over all subjects for various VOIs. For (R)-[11C]verapamil, VT
values increased 4 % on average (range 3 to 6 %) for all VOIs.
For the hippocampus, thalamus, striatum, amygdala and
parahippocampal gyrus, this increment in VT was statistically
significant (pG0.05). For [11C]raclopride, no statistically signif-
icant differences were observed between VT obtained using 3D
SSS and 2D SSS (p90.05). There was a small increase of 3±
1 % in [11C]flumazenil VT values when using 3D SSS rather
than 2D SSS, but this increase was not statistically significant
(p90.05).

Discussion
The HRRT scanner is a high-resolution PET system that can
visualize tracer distributions in the human brain [1]. When
quantifying tracer uptake, there are several factors that can
affect quantitative accuracy [7, 25]. One of these factors is
patient motion. As previously reported by Anton-Rodriguez

et al. [6], we occasionally observed a reduction of VT in (R)-
[11C]verapamil studies that were caused by a patient motion-
induced overestimation of scatter scaling factors. Previous
(R)-[11C]verapamil studies [7, 19, 22] showed a fairly
uniform distribution of VT values in grey matter areas over
the human brain. When patient motion occurs between
transmission and emission data, the observed distribution of
VT becomes less uniform and also deviates from those seen
in other (R)-[11C]verapamil brain studies performed on the
ECAT EXACT HR+ (CTI/Siemens, Knoxville, TN, USA)
[7], a PET scanner that has been extensively studied for its
quantitative accuracy and has been widely used for brain
PET studies. By applying an ACF-margin, the distribution of
VT values becomes more uniform and gets more in line with
those observed on the ECAT EXACT HR+ images. We
therefore believe that the observed reduction of VT, caused
by a patient motion-induced overestimation of scatter scaling
factors, is an artefact.

Effects of an ACF-Margin on Quantitative Accu-
racy

In order to compensate for a patient motion-induced
mismatch between transmission and emission scans that
would lead to an overestimation of scatter scaling factors, a
margin was applied to the ACF sinogram prior to the
estimation of these scatter scaling factor. The present data
illustrate that, by applying an ACF-margin prior to scatter
scaling factor estimation, artefacts visually disappeared from
the reconstructed images of (R)-[11C]verapamil studies
affected by patient motion. A 10-mm ACF-margin resulted

Fig. 4 Effects of 2D versus 3D SSS on reconstructed activity concentrations (summed from frame 5 to the last frame),
illustrated for typical a (R)-[11C]verapamil, b [11C]raclopride and c [11C]flumazenil scans in transaxial and sagittal views (left and
middle panels, respectively). The images on the right show the ratios of reconstructed activity concentrations using 3D SSS to
those obtained using 2D SSS.
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in a statistically significant change in VT of up to 24 % in
those brain regions where the artefacts were present. When
the ACF-margin was larger than 10 mm, no further change
in VT was seen. This suggests that a 10-mm ACF-margin is
sufficient to compensate scatter scaling problems for the levels

of patient motion as observed in this study (up to 6mm) and thus
may provide a properly fitted cutoff value of the scatter tail
profile as described by Anton-Rodriguez et al. [6]. In addition,
use of an ACF-margin did not significantly affect VT for
[11C]raclopride and [11C]flumazenil. This was expected, since
the level of patient motion between transmission and emission
was significantly lower for the [11C]raclopride and
[11C]flumazenil studies when compared to the (R)-[11C]verap-
amil studies, and (R)-[11C]verapamil, compared to
[11C]raclopride and [11C]flumazenil, shows higher levels of
uptake in or near the outer contour of the patient relative to the
levels of uptake in the centre of the brain. This suggests that an
ACF-margin can be safely applied for most tracer studies
without negatively affecting quantitative accuracy. The method
proposed in this study can easily be applied during reconstruc-
tion and does not require any additional reconstruction time. In
short, it provides an effective way to correct for scatter scaling
factor artefacts that are caused by a mismatch between
transmission and emission scans due to patient motion.
Nevertheless, for large magnitudes of patient motion (96 mm),
not only the scatter scaling estimation will be affected but also
tracer uptake, especially for smaller brain structures, due to
motion-induced blurring as well as (misaligned) inaccurate
attenuation correction [12]. Other methods, such as the one
proposed by Anton-Rodriguez et al. [6] or Mourik et al. [12],
should be applied to improve the accuracy of the attenuation
correction and to correct for the effects from patient motion
during a dynamic (60 min or more) PET study, respectively.

Note, however, that the optimal ACF-margin derived in
this study (10 mm) might be study dependent and might not
be optimal for different voxel sizes and other fields of view
(e.g. whole-body imaging). Alternatively, in future applica-
tions, the optimal ACF-margin might be determined itera-
tively (i.e. the ACF-margin could be increased until there is
no change in the estimated scatter fraction) as the compu-
tational cost is relatively small.

Effects of 2D Versus 3D SSS on Quantitative
Accuracy

As a P-gp substrate, (R)-[11C]verapamil is a tracer with low
brain uptake, and quantification of its uptake is expected to
be more challenging than for [11C]raclopride and
[11C]flumazenil [7]. The present study showed a small, but
significant, change in (R)-[11C]verapamil VT for regions in
the centre of the brain when 3D SSS was rather than 2D
SSS, VT remained unchanged for [11C]raclopride and
[11C]flumazenil studies. The observed change may be
explained by the incorporation of oblique sinogram planes
to estimate scatter when compared to 2D SSS that only uses
the non-oblique sinogram. These results are consistent with a
previous simulation and phantom study [2]. However, for
the lower part of the brain, where most of the reference
tissues (e.g. cerebellum and pons) are located, 3D SSS might
still be inaccurate as it does not compensate for outside FOV

Fig. 5 Bar plots illustrating the effects of 2D and 3D SSS on
mean VT (pooled over five subjects), together with SD, of
selected VOIs for a (R)-[11C]verapamil, b [11C]raclopride and
c [11C]flumazenil. Stars indicate statistically significant differ-
ences in VT.
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scatter, as previously stated in [26]. Due to this outside FOV
scatter, 10 % additional scatter was observed in the lower
part of the brain when compared with the centre of the brain.
This might explain the bias that is still observed in HRRT
brain studies when analysed using reference tissue models
when compared to brain studies performed on the HR+ [7,
14]. Although the scatter correction methods for both the
HRRT and the HR+ scanner are similar, the effect of outside
FOV scatter is expected to be lower on the HR+ because a
neuro-shield is used during HR+ scanning.

Future Perspectives

Current and future state-of-the-art clinical PET/CT systems
may be equally sensitive to inaccurate scatter scaling factors
(e.g. due to patient motion) when an SSS algorithm is used,
which is similar to that currently in use for the HRRT.
Therefore, a relatively easy to implement, fast and low cost
method, such as the one presented here, to avoid scatter
scaling issues when low levels of patient motion are present
is relevant for all PET systems, not just for the HRRT.

There are various alternatives to the current tail-fitting
SSS algorithm for estimating scatter. An accurate way to
estimate scatter would be to perform a full Monte Carlo
(MC) simulation [27]. However, such a method may be
computationally expensive. Recently, a new hybrid scatter
correction strategy has been proposed for PET/CT studies to
overcome scatter scaling issues due to incorrect tail fitting
[28]. This method uses SSS to approximate the shape of the
scatter contribution but scales it based on a low-count MC
simulation. Although initial results are promising [28, 29],
MC-SSS is sensitive to outside FOV scatter as well, since it
estimates the scatter scaling factor per bed position (i.e. not
plane by plane). Another promising new alternative for tail
fitting, only recommended for time-of-flight (TOF) PET
scanners [30], is to estimate the scatter scaling factor as an
additional voxel [31], which is updated during each iteration
at the same time the activity is updated using a maximum
likelihood for activity and attenuation (MLAA) algorithm
[32, 33]. MLAA is a promising reconstruction algorithm that
could enable future TOF PET/CT and PET/MR scanners to
estimate attenuation and scatter without the need for a
transmission scan. Unfortunately, the HRRT is not capable
of TOF measurements. Nevertheless, full MC simulations to
estimate scatter and MC-SSS might be interesting to explore
their capacity to further reduce bias that is still observed in
HRRT reference tissue model studies.

Conclusions
When there is a mismatch between transmission and
emission scans due to patient motion, applying an ACF-
margin results in more reliable scatter scaling factors but
does not change (and/or deteriorate) quantification. The
effect of applying an ACF-margin is likely tracer dependent

and might be more beneficial for tracers such as (R)-
[11C]verapamil, where uptake is prominent in skin tissue
(near the outer contour of the patient). 3D SSS, in general,
does not significantly alter the quantification of clinical brain
PET studies, as it shows a small, yet significant, change in
VT only for (R)-[11C]verapamil studies.

In conclusion, use of an ACF-margin can avoid artefacts
in reconstructed HRRT images due to motion-induced
scatter scaling errors. This method might be of interest for
other commercially available PET systems that use the same
scatter scaling method.
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