176 research outputs found

    Design and SAR Analysis of Covalent Inhibitors Driven by Hybrid QM/MM Simulations

    Get PDF
    Quantum mechanics/molecular mechanics (QM/MM) hybrid technique is emerging as a reliable computational method to investigate and characterize chemical reactions occurring in enzymes. From a drug discovery perspective, a thorough understanding of enzyme catalysis appears pivotal to assist the design of inhibitors able to covalently bind one of the residues belonging to the enzyme catalytic machinery. Thanks to the current advances in computer power, and the availability of more efficient algorithms for QM-based simulations, the use of QM/MM methodology is becoming a viable option in the field of covalent inhibitor design. In the present review, we summarized our experience in the field of QM/MM simulations applied to drug design problems which involved the optimization of agents working on two well-known drug targets, namely fatty acid amide hydrolase (FAAH) and epidermal growth factor receptor (EGFR). In this context, QM/MM simulations gave valuable information in terms of geometry (i.e., of transition states and metastable intermediates) and reaction energetics that allowed to correctly predict inhibitor binding orientation and substituent effect on enzyme inhibition. What is more, enzyme reaction modelling with QM/MM provided insights that were translated into the synthesis of new covalent inhibitor featured by a unique combination of intrinsic reactivity, on-target activity, and selectivity

    Different roles for the acyl chain and the amine leaving group in the substrate selectivity of N-Acylethanolamine acid amidase

    Get PDF
    N-acylethanolamine acid amidase (NAAA) is an N-terminal nucleophile (Ntn) hydrolase that catalyses the intracellular deactivation of the endogenous analgesic and anti-inflammatory agent palmitoylethanolamide (PEA). NAAA inhibitors counteract this process and exert marked therapeutic effects in animal models of pain, inflammation and neurodegeneration. While it is known that NAAA preferentially hydrolyses saturated fatty acid ethanolamides (FAEs), a detailed profile of the relationship between catalytic efficiency and fatty acid-chain length is still lacking. In this report, we combined enzymatic and molecular modelling approaches to determine the effects of acyl chain and polar head modifications on substrate recognition and hydrolysis by NAAA. The results show that, in both saturated and monounsaturated FAEs, the catalytic efficiency is strictly dependent upon fatty acyl chain length, whereas there is a wider tolerance for modifications of the polar heads. This relationship reflects the relative stability of enzyme-substrate complexes in molecular dynamics simulations

    N-Acylethanolamine Acid Amidase (NAAA): Mechanism of Palmitoylethanolamide Hydrolysis Revealed by Mechanistic Simulations

    Get PDF
    The N-terminal cysteine hydrolase N-acylethanolamine acid amidase (NAAA) catalyzes the hydrolytic deactivation of the lipid messenger palmitoylethanolamide (PEA), with optimal activity at acidic pH. Using the crystal structure of human NAAA as a starting point, we investigated the catalytic mechanism of PEA hydrolysis with a multiscale approach based on classic molecular dynamics (MD) and quantum mechanical/molecular mechanics (QM/MM) simulations coupled with enhanced sampling and path-collective variables (PCVs). The proton configuration of the catalytic nucleophile, Cys126, and of the surrounding carboxylates was critical to preserve the active site architecture. A stable Michaelis complex was then used to reconstruct the free-energy surfaces of NAAA acylation and deacylation during PEA hydrolysis. Acylation emerged as the critical step, with Cys126 acting both as an acid, to protonate the ethanolamine leaving group, and as a nucleophile, to attack the PEA carbonyl carbon. The ethanol fragment of PEA did not appear to play an indispensable role in acylation, a result further supported by kinetic experiments showing that NAAA hydrolyzes palmitoyl methyl amide (PMA) with high catalytic efficiency. Our multiscale approach identified a distinctive protonation state and catalytic mechanism for NAAA which accounts for pH-dependent activity, mutagenesis data, and mechanism of covalent inhibitors

    Topological principles of protein folding

    Get PDF
    What is the topology of a protein and what governs protein folding to a specific topology? This is a fundamental question in biology. The protein folding reaction is a critically important cellular process, which is failing in many prevalent diseases. Understanding protein folding is also key to the design of new proteins for applications. However, our ability to predict the folding of a protein chain is quite limited and much is still unknown about the topological principles of folding. Current predictors of folding kinetics, including the contact order and size, present a limited predictive power, suggesting that these models are fundamentally incomplete. Here, we use a newly developed mathematical framework to define and extract the topology of a native protein conformation beyond knot theory, and investigate the relationship between native topology and folding kinetics in experimentally characterized proteins. We show that not only the folding rate, but also the mechanistic insight into folding mechanisms can be inferred from topological parameters. We identify basic topological features that speed up or slow down the folding process. The approach enabled the decomposition of protein 3D conformation into topologically independent elementary folding units, called circuits. The number of circuits correlates significantly with the folding rate, offering not only an efficient kinetic predictor, but also a tool for a deeper understanding of theoretical folding models. This study contributes to recent work that reveals the critical relevance of topology to protein folding with a new, contact-based, mathematically rigorous perspective. We show that topology can predict folding kinetics when geometry-based predictors like contact order and size fail.Pharmacolog

    Anabolic steroids purchased on the Internet as a cause of prolonged hypogonadotropic hypogonadism

    Get PDF
    OBJECTIVE: To report a case of hypogonadotropic hypogonadism due to the chronic abuse of anabolic steroids purchased over the Internet. DESIGN: Case report. SETTING: Endocrinology unit of the University of Brescia. PATIENT(S): A 34-year-old man. INTERVENTION(S): A single dose (100 ÎĽg) of triptorelin (triptorelin test). MAIN OUTCOME MEASURE(S): Clinical symptoms, androgen normalization, levels of serum testosterone, follicle-stimulating hormone, and luteinizing hormone. RESULT(S): Within 1 month, the patient's serum testosterone was in the normal range, and he reported a return to normal energy and libido. CONCLUSION(S): The World Anti-Doping Code has proved to be a very powerful and effective tool in the harmonization of antidoping efforts worldwide, but it is insufficient to combat this illegal phenomenon. To tackle the serious side effects caused by doping we believe that it is necessary to increase monitoring and adopt severe sanctions, particularly with regard to Internet sites

    N-Acylethanolamine Acid Amidase (NAAA): Structure, Function, and Inhibition

    Get PDF
    N-Acylethanolamine acid amidase (NAAA) is an N-terminal cysteine hydrolase primarily found in the endosomal-lysosomal compartment of innate and adaptive immune cells. NAAA catalyzes the hydrolytic deactivation of palmitoylethanolamide (PEA), a lipid-derived peroxisome proliferator-activated receptor-α (PPAR-α) agonist that exerts profound anti-inflammatory effects in animal models. Emerging evidence points to NAAA-regulated PEA signaling at PPAR-α as a critical control point for the induction and the resolution of inflammation and to NAAA itself as a target for anti-inflammatory medicines. The present Perspective discusses three key aspects of this hypothesis: the role of NAAA in controlling the signaling activity of PEA; the structural bases for NAAA function and inhibition by covalent and noncovalent agents; and finally, the potential value of NAAA-targeting drugs in the treatment of human inflammatory disorders

    Protein-Protein Interaction Inhibitors Targeting the Eph-Ephrin System with a Focus on Amino Acid Conjugates of Bile Acids

    Get PDF
    The role of the Eph-ephrin system in the etiology of pathological conditions has been consolidated throughout the years. In this context, approaches directed against this signaling system, intended to modulate its activity, can be strategic therapeutic opportunities. Currently, the most promising class of compounds able to interfere with the Eph receptor-ephrin protein interaction is composed of synthetic derivatives of bile acids. In the present review, we summarize the progresses achieved, in terms of chemical expansions and structure-activity relationships, both in the steroidal core and the terminal carboxylic acid group, along with the pharmacological characterization for the most promising Eph-ephrin antagonists in in vivo settings

    New Coumarin derivatives as cholinergic and cannabinoid system modulators

    Get PDF
    In the last years, the connection between the endocannabinoid system (eCS) and neuroprotection has been discovered, and evidence indicates that eCS signaling is involved in the regulation of cognitive processes and in the pathophysiology of Alzheimer’s disease (AD). Accordingly, pharmacotherapy targeting eCS could represent a valuable contribution in fighting a multifaceted disease such as AD, opening a new perspective for the development of active agents with multitarget potential. In this paper, a series of coumarin-based carbamic and amide derivatives were designed and synthesized as multipotent compounds acting on cholinergic system and eCS-related targets. Indeed, they were tested with appropriate enzymatic assays on acetyl and butyryl-cholinesterases and on fatty acid amide hydrolase (FAAH), and also evaluated as cannabinoid receptor (CB1 and CB2) ligands. Moreover, their ability to reduce the self-aggregation of beta amyloid protein (Aβ42) was assessed. Compounds 2 and 3, bearing a carbamate function, emerged as promising inhibitors of hAChE, hBuChE, FAAH and Aβ42 self-aggregation, albeit with moderate potencies, while the amide 6 also appears a promising CB1/CB2 receptors ligand. These data prove for the new compounds an encouraging multitarget profile, deserving further evaluation

    A pilot study of nurse-led, home monitoring for patients with chronic respiratory failure and with mechanical ventilation assistance.

    Get PDF
    We assessed the feasibility of telemedicine for home monitoring of 45 patients with chronic respiratory failure (CRF) discharged from hospital. The patients transmitted pulsed arterial saturation (pSat) data via a telephone modem to a receiving station where a nurse was available for a teleconsultation. A respiratory physician was also available. Scheduled and ad hoc appointments were conducted. Thirty-five patients were on home mechanical ventilation, 13 with invasive and 22 with non-invasive devices. The main diagnosis was chronic obstructive pulmonary disease (COPD). The follow-up period was 176 days (SD 69). In all, 376 calls for scheduled consultations were received and 83 ad hoc consultations were requested by the patients. The actions taken were: 55 therapy modifications, 19 hospitalizations in a respiratory department for decompensated CRF, three hospitalizations in an intensive care unit (ICU), 22 requests for further investigations, 25 contacts with the general practitioner (GP), 66 demands for respiratory consultations and 10 calls for the emergency department. The mean time recorded for the 459 calls was 16 min/patient/week. In 82% of calls, a pSat recording was received successfully. The nurse time required to train the users in the operation of the pSat instrument was high (mean time 30 min). However, the results showed that home monitoring was feasible, and useful for titration of oxygen, mechanical ventilation setting and stabilization of relapse
    • …
    corecore