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Topological principles of protein folding†

Barbara Scalvini, Vahid Sheikhhassani and Alireza Mashaghi *

What is the topology of a protein and what governs protein folding to a specific topology? This is a

fundamental question in biology. The protein folding reaction is a critically important cellular process,

which is failing in many prevalent diseases. Understanding protein folding is also key to the design of

new proteins for applications. However, our ability to predict the folding of a protein chain is quite

limited and much is still unknown about the topological principles of folding. Current predictors of

folding kinetics, including the contact order and size, present a limited predictive power, suggesting that

these models are fundamentally incomplete. Here, we use a newly developed mathematical framework

to define and extract the topology of a native protein conformation beyond knot theory, and investigate

the relationship between native topology and folding kinetics in experimentally characterized proteins.

We show that not only the folding rate, but also the mechanistic insight into folding mechanisms can be

inferred from topological parameters. We identify basic topological features that speed up or slow down

the folding process. The approach enabled the decomposition of protein 3D conformation into

topologically independent elementary folding units, called circuits. The number of circuits correlates

significantly with the folding rate, offering not only an efficient kinetic predictor, but also a tool for a

deeper understanding of theoretical folding models. This study contributes to recent work that reveals

the critical relevance of topology to protein folding with a new, contact-based, mathematically rigorous

perspective. We show that topology can predict folding kinetics when geometry-based predictors like

contact order and size fail.

Over the last 20 years, it has been hypothesized that protein
folding rates and mechanisms can be inferred from the native
state topology.1 The importance of local intra-chain contacts for
small one-domain proteins emerged with the definition of
Contact Order (CO), a ‘‘topological’’ parameter still widely used
to date to predict protein folding rates.2 This parameter was
then coupled with size (length of the protein) with the intro-
duction of absolute CO,3 to allow for a better description of the
folding kinetics of larger proteins. For such proteins, the
folding pathway may be characterized by kinetic traps and
escape from low free energy conformations.4,5 In more recent
years, other models have been suggested for folding rate
prediction, based on total contact distance,6 a small selection
of contact information,7 cumulative torsion angle8 and other
structural information.9–13 Moreover, an evolution of the concept
of contact order called partial contact order was envisioned in
order to follow the progression of such topological descriptors
from the unfolded to the folded state.14 The partial contact order

(pCO) takes into account the likelihood that a certain contact is
formed, and the associated reduction of loop entropy.14

However, contact distance, contact order and protein length
are not inherently topological properties, if topology is to be
intended in the mathematical sense of the word. Topology is a
mathematical concept characterizing the properties of objects
which remain unaltered through continuous, invertible
transformations such as stretching, shrinking and bending.
A first step to introduce topology-based predictors for the
quantification of entanglement was taken by Marco Baiesi
et al.15–17 Drawing from knot theory, the concept of Gaussian
entanglement was first applied to the intertwined backbones of
domain-swapped protein dimers,17 and then to non-overlapping
looping sub-chains of the same protein, where it proved to
complement absolute CO in folding rate prediction on a set of
48 proteins.15 However informative, these topologically inspired
descriptors often concern a fairly limited portion of the available
protein datasets, with about 15% of dimers displaying
significant intertwining,17 and 32% of proteins from the CATH
database showing non-trivial Gaussian entanglement.16 Topological
concepts such as writhe and torsion were also applied to the protein
backbone, yielding good results for folding rate prediction and
revealing the role of handedness of proteins at both local and global
organization levels.18
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Previous topological efforts to quantify the relationship
between the native state three-dimensional arrangement and
folding kinetics relied on the concept of entanglement as defined
by knot theory, and focused on the entanglement of the backbone.
However, knots are rare in proteins, and knotted proteins
generally yield very low folding rates.19 Other topologically
inspired descriptors drawn from knot theory such as Gaussian
entanglement also rely on the concept of backbone entanglement.
The effect of entanglement of proteins with no knots and no
slipknots on folding rates has been studied by Panagiotou and
Plaxco18 and Baiesi, Orlandini et al.15–17 A mathematically
rigorous topological concept, termed circuit topology (CT), has
recently been proposed to describe the topology of unknots.20,21

Circuit topology, in its first order definition, ignores possible
backbone entanglement, and focuses only on the intra-chain
contacts present in the native protein structure. Contacts are
considered to be fixed. This allows circuit topology to provide a
topological description of unknotted, yet folded linear chains,20–23

a type of description which is complementary to that provided by
Gaussian entanglement,15–17 writhe and torsion.18 Moreover,
contact-based topological descriptors represent a very natural
framework for proteins, since contacts often have not only
geometrical but also biological relevance. The circuit topology
framework allows us to readily combine our descriptors with
information such as the energy of a contact, for example. The
vast majority of proteins present intra-chain contacts, making our
analysis applicable virtually to all proteins. Once contacts in a
structure have been identified, they are classified based on their
pairwise topological arrangement (Fig. 1A). According to CT,
contacts can be in either one of three possible relationships with
each other: series (S), parallel (P) and cross (X) (Fig. 1A). Series and
parallel relationships also include a subset of relationships called
concerted relationships, in which one of the two contact sites is
shared between the two contacts. We call these concerted parallel
(CP) and concerted series (CS) relationships. Here, we present a
first order analysis; therefore, CP and CS will be included in the
main sets and counted respectively as parallel and series. We note
that CT was already suggested to have an impact on the folding
dynamics of model polymers,22,24 although its relevance to
protein folding has not been evaluated.

Here, we show how the three fundamental topological
relationships S, P, and X display differential patterns of correlation
with folding rate, providing insight into which types of topological
arrangements facilitate folding and which hinder it. We define the
zipper effect as the mechanism with which a predominance
of series arrangement slows folding, while parallel and cross
arrangements (the so-called entangled relationships) yield higher
folding rates. It is important to note that here the word ‘entangled’
is used in a broad sense, since we are dealing with unknots. Parallel
and cross are designated as entangled because the two loops
forming the relationship are not independent of each other. We
show that both two-state and multi-state class proteins display
statistical evidence of the zipper effect, if we only consider the
topology of short range, attractive energy contacts. Lastly, we will
show how proteins can be decomposed into topological circuits,25

that is, topologically independent units. The number of these

circuits normalized by size correlates positively with the logarithm
of folding rate ln(kf), suggesting that the localization of contacts
inside topological circuits might play a role in facilitating folding
efficiency.

Results
Topological parameters as kinetic predictors

Circuit topology utilizes contacts as basic elements for topological
classification. However, a suitable definition of contacts is
widely dependent on the purpose of the study. For folding rate
prediction, contacts between residues have mostly been used
for quantifying parameters such as CO.2 Here, we will also
consider contacts between residues. However, this is not the
only choice; the flexibility of the CT framework allows us to
consider other types of protein building blocks which can form
contacts; one can identify segments of proteins which correspond to
secondary structure elements, and perform CT analysis on the
contacts created by these coarse-grained structures. In Fig. 1 we can
see the CT diagram of segment–segment (Fig. 1B) and residue–
residue (Fig. 1C) contacts, and their respective CT matrices, from
which the frequencies of CT topological relationships can readily
be extracted (Fig. 1D and E). Strikingly, these CT frequencies
correlate with the logarithm of folding rate. The two choices of
contact definition provide very different structural resolution, and
we expectedly observe different degrees of correlation with folding
rate. Contacts were retrieved from PDB structures, by defining a
spatial cut-off for atom–atom distance (5.0 Å), and a threshold for
the minimum number of atoms to be found in spatial proximity
below the cut-off in order to consider the two residues/segments
in contact (5 atoms for residues and 10 atoms for segments).
Our main conclusions are robust with respect to the choice of
parameters. For other cut-off choices, see the ESI.†

Next, we investigated whether the observed correlations
depend on the complexity of the folding pathway. Many proteins
fold and unfold with one main fast event, by a simple two-state
transition. These ‘‘two-state folders’’11,26,27 have gathered much
of the attention of scientific inquiry in the past, and their folding
rates correlate with relative CO.2 On the other hand, proteins
with more intricate multi-state transitions – ‘‘multi-state folders’’
– have shown a strong dependency of their folding kinetics on
the protein length (and not CO).28 Notably, CT parameters also
provide differential patterns of correlations for two- and multi-
state folders, at first sight (Fig. 1F and G). For both segment
and residue analyses we find statistically significant negative
correlation between ln(kf) and series in multi-state folders
(respectively r = �0.32, p = 0.043 and r = �0.48, p = 0.002).
This result is understandable as series relationships favor
delocalization along the chain, which seems to slow down the
folding of multi-state folders, but leaves two-state folders
unaffected. On the other hand, two-state proteins display
moderate negative correlation with cross relationships (r =
�0.31 and p = 0.006), in their segment representation. These
differences might be due to the different average size of the two-
state and multi-state proteins (Fig. 1H). Two-state proteins are
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generally smaller; therefore, highly entangled topologies such as
those favored by cross arrangement might be less likely to
appear at the secondary structure level, for geometric and
energetic constraints. The likelihood of finding such structures
might increase for longer folding times. Therefore, it is not
surprising to find a negative correlation between cross and
folding rates in this instance. The folding rate in multi-state
proteins displays a higher impact of topology, showing evidence
of statistically relevant zipper effect at both residue and secondary
structure levels, having negative correlation with series and
positive correlations with at least one of the two entangled
relationships – parallel for segments (r = 0.46 and p = 0.003),

and both parallel and cross for residues (r = 0.31 and p = 0.049 for
parallel, r = 0.50 and p = 0.001 for cross). Segment analysis yields
correlation values for parallel (in multi-state folders) which are
comparable to those obtained by Panagiotou and Plaxco for
the writhe of the protein Primitive Path and the logarithm of
the folding rate.18 Chain writhing is a mechanism (possibly the
main one in proteins) which can indeed create parallel contact
topologies; thus, in this case, contact topology might be seen as a
proxy for backbone topology. However, no correlation is found for
parallel topology in two-state proteins, indicating possibly that the
protein is too short to produce substantial writhe. CT parameters
are normalized by the number of contacts in the chain, making it

Fig. 1 Segment and residue-based CT parameters correlate with folding rate. (A) Three pairwise arrangements of CT: series, parallel and cross. The inner
contact is in parallel relation (P) with the outer contact, while the outer contact is in inverse parallel relation (P�1) with the inner contact. (B) Circuit
diagram for segment-based contacts. (C) Circuit diagram for residue-based contacts. (D) CT matrix for segment-based contacts. (E) CT matrix for
residue-based contacts. Segment and residue-based contacts offer very different resolution into protein topological arrangement, for the same protein
(pseudoazurin, PDB code: 1ADW). F Scatterplot of topological fractions (series, parallel and cross) versus folding rate (ln kf), for segment-based contacts.
G Scatterplot of topological fractions (series, parallel and cross) versus folding rate (ln kf), for residue-based contacts. H Size distribution (number of
residues) for two-state and multi-state folders. I Contact Order distribution of the dataset. The dataset was divided into three sub-datasets (Lower,
Average and Upper CO) by setting an upper (16.47) and lower (9.72) limit.
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possible to compare proteins with very different geometrical
properties. However, due to the assembly principles of proteins
and geometrical and steric constraints, a non-trivial relationship
between size and CT parameters exists (Fig. S1, ESI†).

Disentangling the contributions of geometry and topology

We demonstrate that topology-based predictors complement
CO and size, which are geometry-based predictors. In order to

do so, we divided the dataset into three sub-datasets based on
their CO (Fig. 1I): Upper, Average and Lower CO. CO values
were retrieved from the ARCPro dataset29 (cut-off value = 6 Å).
Fig. 2A and B show the correlation coefficients for these three
subsets, for two-state and multi-state proteins. Exact values can
be seen in Tables S1 and S2 (ESI†). We also compare the CT
correlation maps with those obtained by using CO and size on
the same datasets (Fig. 2C and Table S3, ESI†). While CO is

Fig. 2 Classification based on contact order and length filtering highlights differential patterns of correlation. (A) Folding rate correlation map for
segment-based CT, with CO classification. (B) Folding rate correlation map for residue-based CT, with CO classification. (C) Folding rate correlation map
for contact order and size, with CO classification. CT seems to be more informative than contact order for proteins with Lower and Upper Folding rates.
(D) Boxplot of folding rates for different CO subsets. Slow folders populate the Upper CO sub-dataset, and display correlation between folding rate and
long-range residue-based contacts. (E) Folding rate correlation map for residue-based CT, with CO classification. The two maps show only long-range
contacts (on the left) and only short-range contacts (on the right). The threshold for range classification was set to 24 residues. (F) Triangular plot of the
topological composition throughout the dataset, for residue-based CT. (G) Triangular plot of the topological composition throughout the dataset, for
long-range residue-based CT. (H) Triangular plot of the topological composition throughout the dataset, for short-range residue-based CT.
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moderately accurate in predicting ln(kf) for the Average CO
dataset (r =�0.53 and p = 4.5� 10�4 for two-state; r =�0.51 and
p = 0.03 for multi-state), CT seems to obtain the best results for
the two tails of the CO distribution, obtaining correlations as
high as r =�0.93 (p = 0.002) for series and r = 0.94 (p = 0.001) for
cross for multi-state proteins in the Lower CO range (Fig. 2B).
These results imply that CO and CT give in fact complementary
information about folding kinetics. Also, CT is able to provide
resolution for those proteins that have a similar CO but present
significant discrepancies in the folding rate. The size parameter
also provides strong correlations for the Upper and Lower CO
datasets (Fig. 2C and Table S4, ESI†), although only for multi-
state proteins (r = �0.89 and p = 0.01 for Lower CO and r =
�0.61 and p = 0.01), as expected. By combining the kinetic
information on multi-state proteins provided by residue-based
CT and size parameters, we see that not only the number of
residues is impactful but also their topological arrangement,
with contact delocalization favored by series relationships
being as efficient as protein length in promoting a slow folding
process. Interestingly, CT on the segment level displays an
opposite trend for cross relationships for multi-state, Lower
CO proteins, indicating that such a level of entanglement at the
secondary structure level might actually be hindering folding
for those members of the multi-state protein class which are
smaller (Fig. 1H) and have higher folding rates (Fig. 2D). The
fact that smaller multi-state proteins show similar correlations
for the cross-fraction to two-state folders might suggest a rather
continuous transition with respect to size between multi-state
and two-state classes, rather than two binary distinct folding
styles.5,30

Arrangement of short-range attractive contacts as a topological
driver of folding

Here, we investigate how topology, interaction energy, and
interaction range work together to regulate the folding kinetics.
The CO reflects the relative importance of local and non-local
interactions in the molecule.2 The conceptual background
behind CO is that contacts between residues that are closer
along the chain are less entropically costly, and therefore tend
to happen early in the folding process. Therefore, simple
protein structures which are rich in local contacts tend to fold
faster.1,31 Broglia and Tiana32 highlighted the role of local
contacts by identifying a specific hierarchy, which involves the
formation of early local elementary structures (LESs), followed by
the assembly of the LES into a post critical folding nucleus at a
later stage. Moreover, evidence exists that natural selection favors
folds with a low contact order,33 and therefore structures rich in
local contacts. Indeed, off-lattice models of protein folding
showed that the suppression of local interactions prevents the
structure from reaching the native conformation.34 However, the
respective role of local versus non-local interactions is still a highly
debated subject in the literature. In silico studies of three model
36-mers on a cubic lattice suggested that non-local interactions
are the primary determinant of protein folding.35

We can ask ourselves if not only the relative number of
local versus non-local contacts, but also their topological

arrangement has an impact on folding kinetics. To address
this question, we applied a 24 residue threshold in order to
discriminate between short-range and long-range contacts
prior to CT analysis (Fig. 2E and Tables S5, S6, ESI†). It is
apparent to see that the topology of short-range contacts
displays correlations which are higher in magnitude and also
more widespread over the whole CO range, as opposed to long
range contacts. Multi-state proteins in the Lower CO range still
display the highest correlations between the topological
content and ln(kf): r = �0.97, p = 1.9 � 10�4 for series, r =
0.89, p = 0.007 for parallel, and r = 0.94, p = 0.002 for cross. The
zipper effect appears to be confirmed in the results from the
short-range correlation panel (Fig. 2E): once local contacts are
uncoupled from non-local contacts in CT analysis, negative correla-
tions with folding rates are only seen for series relationships, and
positive correlations are observed with the entangled relationships,
cross and parallel. Short-range contacts appear as the main topo-
logical folding drivers. This is compatible with the findings of
Adesh Kumar and co-workers,36 who theorized that local contacts
might be fundamental for the differentiation between the native-
like conformations during folding, by Monte Carlo simulation of
three protein structures. However, correlations with long-range
contacts also appear for the ‘slow folding’ Upper CO proteins
(Fig. 2D and E). Since non-local contacts along the chain are
generally formed at a later stage during folding,32 they can only
affect the folding process after longer characteristic times. This
finding suggests that, for very fast folders, the impact of the
topology of long-range contacts might be negligible.

Moreover, we find that short and long-range contacts are
also qualitatively different with respect to the topological con-
tent. Fig. 2F portrays in a triangular plot the percentages of
series, cross and parallel for all residues. We can compare it to
the topological content in long-range (Fig. 2G) and short-range
(Fig. 2H) contacts; we see that non-local contacts are actually
much richer in cross relationships with respect to local
contacts. This finding indicates that on the short-range
contacts, high levels of entanglement such as those promoted
by cross relationships are unfavorable.

Contacts can also be discriminated by assigning energy-like
quantities based on the statistical potential suggested by Paul
Thomas and Ken Dill.37,38 This is a first order attempt to add
bio-chemical information to contact topology: contacts can be
filtered based on the sign of the potential matrix element
associated with residue–residue interaction, resulting in
‘repulsive energy contacts’ (E 4 0) and ‘attractive energy
contacts’ (E o 0). The correlation map for energy filtering
(Fig. 3A and Tables S7, S8, ESI†) clearly highlights how the
topology of attractive energy contacts plays the biggest role in
folding kinetics. However, repulsive contacts can still correlate
with slower folding processes, as in the case of Lower CO multi-
state (r = �0.95, p = 0.001 for series), for Upper CO two-state
proteins (cross, r = �0.58, p = 0.05) and Upper CO multi-state
proteins (series, r = �0.50, p = 0.048).

Considering the results for length and energy-based contact
filtering, it becomes clear that not all contact topologies are
equally impactful when it comes to folding. Local, negative
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(attractive) energy contacts seem to be the topological drivers of the
folding process. It is therefore natural to reconsider correlations for
the whole dataset while considering short-range, attractive energy
contacts exclusively (Fig. 3B). Interestingly, this type of filtering
yields statistically significant correlations for both two-state and
multi-state proteins, for all three topological relationships. Even
more notably, now both two-state and multi-state proteins show
evidence of zipper effect, making the distinction between the two
classes more quantitative than qualitative; correlations seem to be
still more pronounced in the case of multi-state folders, but
correlation trends are the same for the two classes. Fig. 3C shows
another evidence of zipper effect; with decreasing contact order
(higher folding rate), there is a gradual increase in entangled
relationships. However, the triangular plot of the energy/length
filtered dataset (Fig. 3D) is a closer match to the short-range
triangular plot (Fig. 2H) rather than to the attractive energy plot
(Fig. 3E), indicating that the best predictor for the topological

content is the distance between contacts, and not the energy of
the contacts. Moreover, the topological content for repulsive energy
contacts (Fig. 3F) does not look significantly different from the one
for attractive energy contacts (Fig. 3E).

Linear combination of CO and CT parameters as an improved
folding rate predictor

The analysis outlined so far suggests complementarity between
folding rate descriptors such as CT parameters and Contact
Order. We see, for example, how the pre-filtering of data based
on Contact Order is useful to uncover differential patterns of
correlation for CT parameters (Fig. 2A–C, E and 3A). CO pre-
filtering highlights also how proteins belonging to different CO
ranges might be best described by CO, CT parameters or size,
when it comes to folding rate prediction. It is then natural to
ask whether these folding rate descriptors could be combined
to produce more accurate folding rate predictions. In order to

Fig. 3 Classification based on contact order and energy filtering highlights the kinetic role of the topology of short-range attractive contacts. (A) Folding
rate correlation maps for residue-based CT, with CO classification. The two maps show only negative (attractive) energy contacts (on the left) and only
positive (repulsive) energy contacts (on the right). (B) Scatterplot for residue-based CT fractions and folding rate: only short-range attractive energy
contacts were included. With this type of filtering, both folding types display the zipping effect, and all correlations are significant (p value r0.05). (C) Bar
plot of topological fractions with respect to contact order classification, for attractive energy short-range residue-based CT. With increasing CO, we
observe an increase in series fraction and a decrease in entangled fraction (parallel, cross). (D) Triangular plot of the topological composition throughout
the dataset, for attractive energy short-range residue-based CT. (E) Triangular plot of the topological composition throughout the dataset, for attractive
energy residue-based CT. (F) Triangular plot of the topological composition throughout the dataset, for repulsive energy residue-based CT.
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test this hypothesis, we envisioned a multilinear regression
analysis of the dataset, using CT parameters, CT parameters
combined with CO, and CT parameters combined with size as
independent variables. Folding rate predictions yielded by
using only CO and size are also reported for comparison.
For the analysis, we use CT fractions derived from attractive
energy short-range contacts, since this unifies two- and multi-
state folders for what concerns their correlation patterns with
respect to CT (Fig. 3B). All CT parameter values reported in this
paper were previously normalized by the total sum of S, P and X
relationships in the protein. This normalization implies that,
once we provide two CT fractions, the third is automatically
determined, as the sum of all three fractions needs to yield 1.
Thus, we can compare proteins with very different number of
contacts. However, one of the three CT parameters is actually
redundant, when it comes to multilinear regression analysis
(MLR). Therefore, we decided to discard one and only use
two CT parameters for folding rate prediction. Since the
independent variables used for MLR should not be too highly
correlated, we chose the two CT parameters which presented the
lowest correlation coefficient when confronted with each other,
that is, parallel and cross contacts (r = 0.23, p = 0.011). The CT-
based folding rate predictor is therefore defined as:

KCT = cPP + cXX

where KCT is the predicted logarithm of the folding rate, P and X
are the parallel and cross fractions and cP and cX are coefficients
which are calculated by the MLR model over the training set.
Following the same reasoning, CT parameters can be combined
with the CO and size to obtain new predictors:

KCT+CO = cPP + cXX + cCOCO

KCT+L = cPP + cXX + cLL

where L is the size of the protein (number of residues), and cL,
cCO are the coefficients calculated by the MLR model. In order
to perform this analysis we relied on a freely available Python
tool for machine learning and predictive data analysis,
scikit-learn 0.24.2.39 Thanks to the scikit-learn cross-validator
module, we divided the dataset into 5 consecutive folds
(sub-sets). Iteratively, 4 of these 5 datasets were used as training
sets for the model, and the remaining one as the test set for
folding rate prediction. Folding rate predictions on one of these
test sets can be seen in Fig. 4A, for all predictors. Predictions for
all test sets can be found in Fig. S2 (ESI†). A useful parameter to
quantify the goodness of our prediction (how well the MLR
model is representative of our dataset) is the coefficient of
determination R2.40 The table in Fig. 4B presents the average R2

over the predictions from the 5 test sets; it is clear to see that
both CO and size have a higher predictive power when
combined with CT than when they are used on their own, with
KCT+CO representing the best folding rate predictor. Folding rate
predictions from the first and last test set were excluded from
the comparison, as the residual (predicted folding rate –
experimental folding rate) distribution from CO prediction
did not satisfy the normality requirement (Table S9, ESI†).
However, R2 values and adjusted R2 values from all test sets
can be seen in Tables S10 and S11 (ESI†) respectively. The
adjusted determination coefficient Radj

2 is a modified version
of R2 which takes into account the number of independent
variables in the model. It discriminates whether the added
variables provide an improvement to the prediction which is
higher than what would be expected by the addition of random
parameters. The Radj

2 coefficient confirms our general conclusions
which identify KCT+CO as the best predictor (Table S11, ESI†). This
result proves the complementarity of CT parameters and CO for
folding rate prediction, which we already hypothesized from the
analysis presented in Fig. 2B and C.

Fig. 4 The linear combination of CT parameters and CO allows for folding rate prediction with increased statistical significance. (A) Scatterplots of
predicted folding rate (obtained with multilinear regression over CT fractions, CO, protein length and a combination of these parameters) and
experimental folding rate (ln kf), calculated over one of the 5 training/test set combinations. (B) Average R2 score for CT parameters (parallel, cross), CO,
size (protein length expressed in number of residues) and linear combination of CT parameters and CO, CT parameters and size. Numbers between
parentheses indicate the standard deviation. The average was performed over 3 different choices of training/test subsets. Predictions obtained over test
sets 1 and 5 were discarded by residual analysis, as their residual distribution did not satisfy the normality requirement.
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Circuits as elementary folding units

The circuit topology of a chain enables bottom-up analysis of a
fold architecture. We investigate whether higher order topological
features are seen in proteins and whether they contribute to
folding kinetics. It was previously suggested that protein folding
might proceed in a step-wise manner from separately cooperative
elementary units of about 20 residues, called foldons.41

Analogously, we can look for the topological equivalent of folding
sub-units by exploiting a string notation of contacts, such as that
utilized by generalized circuit topology.25 The string notation
allows for the identification of circuits in the chain, formally
defined as a segment of a string that consists only of pairs of
letters. Circuits represent well-separated topological structures

within a complex topology. Let us have a look at Fig. 5A and B
to clarify the notation. Letters are assigned to contacts in the order
in which they appear along the chain. Each contact site will then
be represented in the string by that letter; consequently, each
letter will appear in the sequence twice, as each contact is formed
by two contact sites (residues, in this case). Thus, if we take the
diagram shown in Fig. 5A, and we follow the chain from begin-
ning to end, we first encounter contact A, then contact B, then C,
B, C and finally A. Therefore, the string notation is ABCBCA. The
choice of the letter (or general symbol to identify the contact) is
arbitrary; the notation is valid as long as the symbol used is
unique to that contact in the string. Each segment of the chain
which consists of full pairs of letters represents a circuit.

Fig. 5 The number of topological circuits normalized by the size of the protein correlates positively with folding rate. (A) Example of a circuit, with string
and diagram representation. This circuit can be further decomposed, as BCBC is itself a circuit. (B) Example of a circuit, with string and diagram
representation. Also in this case, the circuit can be further decomposed. If we remove contact B, we would obtain circuit ACCA, leaving the topology of
contact C and A unaffected. The same goes for contact C and circuit ABBA. Contacts C and B together also form a circuit, BBCC. (C) Scatterplot for
number of circuits normalized by size and folding rate. Legends display Spearman correlation coefficients. (D) Scatterplot for the circuit mean length and
folding rate, for 24 and 36 residue thresholds for long-range exclusion. No correlation was detected for the 12 residue threshold. (E) Histograms of the
number of circuits, normalized by protein length, for all long-range exclusion thresholds. (F) Triangular plot of CT fractions for residue-based CT. The
color code indicates the number of circuits normalized by size, calculated with 36 residues long-range exclusion threshold.
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Therefore, the chain identified by ABCBCA is itself a circuit. BCBC
is also a circuit, while ABCB is not. In Fig. 5B, ABBCCA is a circuit,
as also BB and CC. These are topologically independent units; the
circuit CC could be removed, and the topology of ABBA would be
unaffected; ABBA would still be a circuit. However, which circuit
should we consider, when decomposing a longer chain? ABBCCA
or the shorter BB and CC? This depends on the threshold we
impose for the exclusion of long-range contacts. Three thresholds
were tested on our dataset, 12, 24 and 36 residues. Imposing a
threshold implies, for example, that the contacts which are
formed by residues that are more than 12 residues apart
along the chain are erased, in order to reveal the self-contained
topological sub-structures of this length range.

The retrieved number of circuits is related to the size of the
protein, but not in a trivial way.25 The number of circuits in a
protein can be considered its topological size. Topological and
geometrical size are clearly two closely related concepts. Here
we show, however, that the information provided by these two
parameters is not redundant. Correlations between protein size
and number of circuits decrease as we increase the threshold
for long-range contact exclusion in circuit calculations.
Correlations go from being as high as r = 0.91 (p = 1.85 �
10�47) for tlr = 12, to r = 0.64 (p = 2.98 � 10�15) for tlr = 36. This
consideration sets the lower boundary for our analysis, as for
thresholds which are as low as 12 residues, the detected
topological length size coincides with the geometrical size.
This becomes apparent when we normalize the number of
circuits by protein length, and use the normalized number of
circuits as folding rate predictor (Fig. 5C). While we observe no
correlation between the normalized number of circuits and
ln(kf) for tlr = 12, the correlation increases as we go towards a
higher threshold. The correlation is particularly pronounced for
two-state folders, for which we observe significant correlations
for both tlr = 24 (r = 0.49, p = 3.05 � 10�6) and tlr = 36 (r = 0.50,
p = 2.55 � 10�6). Multi-state folders, on the other hand, only
display correlation for tlr = 36, which is also weaker in magnitude
as opposed to that of two-state proteins (r = 0.32, p = 0.039). This
is interesting especially if we consider how traditionally size as a
folding rate predictor was particularly successful when applied
to multi-state folders. Observing a significant, albeit weak
correlation for multi-state folders for the normalized number of
circuits indicates that topological and geometrical sizes are not
always equivalent concepts. This consideration is particularly true
when we consider two-state folders, where size generally provides
only modest correlations. Indeed, for this dataset the correlation
between the protein length and ln(kf) for two-state folders is
r = �0.28 and p = 0.010 (Fig. S3, ESI†); this finding suggests that
the topological length might be a better descriptor for folding
kinetics than the geometrical size, for two-state proteins. In
general, the correlations in Fig. 5C suggest that, for proteins of
comparable length, a subdivision in a higher number of topolo-
gically independent units might facilitate folding. Moreover, the
size of the circuits also seems to matter for two-state folders, with
proteins made up by smaller circuits folding faster (Fig. 5D).

The distribution of the normalized number of circuits for
two and multi-state folders also contains crucial information

concerning the topological makeup of the two folder types
(Fig. 5E). While for tlr = 12 and tlr = 24 we do not observe any
particular difference between the two distributions, for tlr = 36,
we actually observe a shift between the two, with two-state
folders having a longer distribution tail towards high values of
normalized number of circuits. For tlr = 36 residues, the multi
and two-state distributions for normalized number of circuits
are statistically different, as quantified by the Mann–Whitney
U test (p = 5.05 � 10�4). There is still significant overlap
between the two distributions for low values of normalized
number of circuits, indicating, again, that the difference
between two and multi-state folders is not binary. Nevertheless,
the results suggest that topology might be informative not only
of the speed but also of the quality of the folding process.

Concerning the topological content of the circuits, we do not
observe a clear trend between the normalized number of
circuits and topological fractions (Fig. 5F). While short-range
contacts contained inside one circuit tend to be in series with
local contacts present in other circuits, we also find that a
relatively high number of normalized circuits can also be
compatible with high percentages of entangled relationships.
This enrichments in cross and parallel fractions can be due to
the fact that circuits favor tight knit local interaction and tend
to bring protein strands closer together. Moreover, circuits can
also create long-range entangled relationships with each other,
which are generally ignored in the computation of circuits, if
they happen for residues which are more distant along the
chain than the threshold for long-range exclusion.

Discussion

Thanks to the theoretical framework of CT, we were able to
draw a correlation between topological properties and folding
kinetics, disentangling the role of topology from that of
geometry. A significant step in the direction of topological
description of folding phenomena was undertaken by
Nikolay V. Dokholyan et al., who demonstrated that average
graph connectivity was a determinant of folding probability for
pre-transition and post-transition states in the protein folding
pathway.42 Different approaches drawn from knot theory were
also used to describe the entanglement, torsion and writhe of
the protein backbone,15–18 devising topologically inspired
descriptors which yielded fairly good correlations with the
logarithm of the protein folding rate.15,18 Here, we have taken
a fundamentally new step forward, by showing how folding
rate can be predicted by CT parameters. Circuit topology
(as presented in this study) only focuses on contacts, therefore
ignoring the entanglement of the backbone. Moreover, this
method does not require cumbersome mathematical and
computational operations to connect the ends of the chain,
such as those applied by Sulkowska et al.43 CT not only
considers the number of contacts in the protein, but also shows
that there are differential patterns of correlations with respect
to the topological arrangement of the contacts. Series, parallel
and cross contacts are invariant with respect to shrinking,
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bending, stretching and other continuous transformations,20

and thus present true topological features of protein folds.
Our analysis reveals that CT and CO have complementary
ranges of validity and can be coupled to predict with accuracy
the folding rate of a protein within a wide range of sizes and
folding complexity. Moreover, CT offers invaluable information
about what type of topological arrangements favor or hinder
folding, therefore adding a mechanistic insight into folding
rate prediction. The evidence of the zipper effect for short-
range, attractive energy contacts offers a generalized model for
folding which resolves the qualitative discrepancy between two-
state and multi-state proteins. This unified view is beneficial
since often attribution to two-state or multi-state classes is
somewhat arbitrary,30 and the folding state of a protein might
also not be known a priori. Moreover, we found that the zipper
effect yields a particularly high correlation for multi-state
folders, which were previously found to mainly correlate with
protein length.28

Although the presented implementation of CT ignores back-
bone entanglement, one can consider a comparison between
the correlation scores obtained by CT analysis and those
extracted by other topologically inspired descriptors such
as torsion, writhe, Gaussian linking number and its linear
combinations with relative and absolute contact order.15,18 It
is natural to compare the results obtained in Fig. 1F for
segments to the analysis carried out by Panagiotou and Plaxco,
about torsion and writhe of the protein backbone. They
obtained correlation scores as high as 0.48 and 0.45 for writhe
and torsion, respectively, with respect to the logarithm of the
folding rate. We obtain comparable results when considering
the parallel relationship. However, we only obtain it for multi-
state folders, while writhe and torsion correlation values were
only provided for two-state folders.18 A combination of the two
approaches might provide a more complete description for
protein folding kinetics at the secondary structure level.
For what concerns Gaussian entanglement, correlations as high
as �0.64 and �0.74 were obtained for two and multi-state
proteins, respectively,15 with correlations increasing when
these scores were combined with RCO and ACO. However,
these results were obtained on small datasets (26 two- and 22
multi-state proteins); it is important to take into account that
this type of analysis is sensitive to the size and characteristics of
the dataset.15 In fact, CT provides comparable scores when
applied to smaller subsections of the datasets, with sizes
comparable to the ones in these studies (Fig. 2 and 3).
Moreover, combining CT with traditionally used descriptors
such as CO and protein length allows for an increase in the
predictive power of both parameters (Fig. 4). One might also
consider the advantages of combining contact- and
entanglement-based descriptors for protein folding prediction.
Generalized CT25,44 expands CT concepts to entangled subloops
of a chain (the so-called soft contacts), therefore offering the
opportunity for such complete description in future research.

The statistically significant correlations found between folding
rate and the topology of short-range contacts, as well as the
number of circuits, suggest that folding happens primarily at

the circuit level. We might find parallels between the concept of
topological circuits and the one of local elementary structures
(LESs) envisioned by a hierarchical model of protein folding.32,45

Following this reasoning, one would envision a folding model in
which folding occurs early on inside the circuits, and at a later
stage the circuits are arranged with respect to each other, forming
inter-circuit contacts. This type of folding model also matches the
‘zipping and assembly’ mechanism theorized by S. Bano Ozkan
and co-workers.46 This folding mechanism would be compatible
with our observations that the topology of long-range contacts
correlates with folding rate only for slow-folding proteins (Fig. 2E).
Circuits presumably represent the elementary topological units of
folding. The correlations between the normalized number of
circuits and folding rate for two-state folders (and to a lesser
extent, multi-state folders) indicate that, for proteins of
comparable sizes, the ones that present multiple, small folding
elementary units will fold faster. The high correlations obtained
by two-state folders shed light on the nature of the different
mechanisms experienced by two and multi-state proteins during
folding. In particular, it would seem that the topological length, as
opposed to the geometrical length, might play a role in folding
rate prediction for two-state proteins.

These insights into the role of native topology offer not only
new tools for the theoretical understanding of protein kinetics,
but also powerful principles for protein design. The framework
of CT has already proved to be effective in the field of molecular
engineering.47 The zipper effect and circuit decomposition
might provide an easily applicable topological prescription for
obtaining proteins with the desired kinetic properties.

Methods

All proteins, CO and kinetic information were retrieved from
the ARCPro dataset.29 Contact order retrieved from the ARCPro
dataset was computed as the absolute contact order (ACO)
based on a 6 Å cut-off value for determining contacts by a
multiple contact all-heavy atom method. Four proteins
were excluded from analysis: 1FMK, 1M9S and 2BLM for the
incompleteness of structural information in the PDB files, and
1RA9 for incompleteness in kinetic information in the dataset.
Therefore, the whole dataset for analysis comprised 122
proteins. The sub-datasets contained the following number of
proteins: 36 proteins for Lower CO (multi-state: 7 and two-state: 27),
58 proteins for Average CO (multi-state: 18 and two-state: 40) and 28
for Upper CO (multi-state: 16 and two-state: 12). The partitioning of
the dataset into CO ranges was made by calculating mean x and
standard deviation sx of the CO distribution and defining the
following thresholds:

tUpper ¼ xþ sx
2

tLower ¼ x� sx
2
:

Circuit topology parameters were retrieved using our
custom-made Python code, which allows for energy, length
filtering and circuit decomposition options. All PDBS are
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pre-processed automatically before analysis, in order to remove
water molecules, hydrogen atoms and various binders. Only
one chain (the first contained in the PDB) is selected.

Contacts between segments were calculated based on a
distance cut-off of 5.0 Å and a cut-off in number of atoms equal
to 10. See the ESI† for distance cut-off values equal to 3.5, 4.0,
5.0, 5.5 and 6 Å (Fig. S4, ESI†). For the definition of segments,
the secondary structure files of the proteins as produced by the
free web service STRIDE48 were used. Each secondary structural
element as defined in the STRIDE file represents a segment, to
which contacts formed by atoms included in the segment are
assigned.

Contacts between residues were calculated based on a
distance cut-off of 5.0 Å. Residues were deemed to be in contact
when more than na = 5 atoms were found to be closer than the
distance cut-off. We repeated the analysis for cut-off values
equal to 3.5, 4.0, 4.5, 5.5 and 6.0 Å (Fig. S5, ESI†) and for na = 1,
2, 3, 4, 5 and 6 (Fig. S6, ESI†). The four closest neighbors of each
residue were excluded from analysis. Each retrieved contact site
in the protein structure was given an index. Indexes were given
based on the order in which contact sites appeared along the
protein chain, from the left end to the right end of the chain.
In this way, each contact was characterized by the two indexes
(i, j) of its constituent contact sites. In order to define the CT
relationship between two contacts, their contact indexes
(i, j) and (r,s) were compared. CT relationships were assigned
based on the mathematical relationships summarized below:

Ci; jSCr;s , i; j½ � \ r; s½ � ¼ �

Ci; jPCr;s , i; j½ � � ðr; sÞ

Ci; jXCr;s , i; j½ � \ r; s½ �=2 i; j½ �; r; s½ �f g[Pðfi; j; r; sgÞ

Ci; jCSCr;s , ðð i; j½ � \ r; s½ � ¼ if gÞ _ ð i; j½ � \ r; s½ � ¼ jf gÞÞ

Ci; jCPCr;s , ðð i; j½ � � r; s½ �Þ ^ i ¼ r _ j ¼ sð ÞÞ

where P denotes the powerset i.e., all subsets of a set including
the null set (+). The topological relationships introduced
above are sufficient and necessary to describe the topology of
any folded linear chain with binary contacts.20 For simplicity,
CP and CS relationships were counted respectively as parallel
and series in the analysis presented in this paper. One can
readily adjust the set theory definition to reduce the relation set
{P, S, X, CP, CS} to {P, S, X} and to make the parallel relation
symmetric so that P = P�1:

Series: Ci; jSCr;s , i; j½ � \ r; s½ � � fi; j; r; sg

Parallel Ci; jPCr;s , i; j½ � � r; s½ � _ r; s½ � � i; j½ �

Cross: Ci; jXCr;s , i; j½ � \ r; s½ �=2 i; j½ �; r; s½ �f g[Pðfi; j; r; sgÞ

Correlation analysis for segments and residues subdivided
in CO subgroups, for different distance cut-off values, can be
seen in Fig. S7 and S8 (ESI†). Distance filtering (short-range
versus long-range contacts) was carried out with a threshold for
long-range exclusion of 24 residues. The analysis was also

repeated for thresholds equal to 12 and 36 residues (Fig. S9,
ESI†). Energy filtering was carried out by exploiting the
statistical potential matrix calculated by P. Thomas and
K. Dill.37 The Pearson correlation coefficient and two-tailed p
values were calculated using custom-made data analysis Jupyter
lab files. All correlation maps shown in the paper display
correlations with p value r0.05.

Multilinear regression was performed by using an ordinary
least squares linear regression from the linear_model module
in scikit-learn 0.24.2. The subdivision into subsequent training
and test sets was performed by the model_selection module,
with the K Fold function. The five sets are formed respectively
by protein 1 to 25, protein 26 to 49, protein 50 to 73, protein 74
to 97 and 98 to 121. Indexes refer to those assigned to proteins
in the ARCPro database.

Residuals from folding rate prediction were tested for
normality with the Shapiro test. Distributions with P values
o0.05 were considered not normal. In order to evaluate the
quality of the prediction, the determination coefficient R2 was
used, as calculated by the metrics.r2_score function:

R2 y; ŷð Þ ¼ 1�

Pn

i¼1
ðyi � ŷiÞ2

Pn

i¼1
ðyi � �yÞ2

where ŷi is the predicted value of the i-th data point, yi is the
corresponding true value, n is the total number of samples and

�y ¼ 1

n

Pn

i¼1
yi. The adjusted determination coefficient is defined

as:

R2
adj ¼ 1� ð1� R2Þðn� 1Þ

n� p� 1

where n is the number of samples and p is the number of
predictors (independent variables).

Circuit decomposition and counting were performed by setting
a threshold on the length of the circuits. Given the average length
l of the circuits in a protein, and sl their standard deviation, the

circuits with a length below a threshold t1 ¼ l � sl
2

were dis-

carded. Exclusion of smaller circuits was done under the assump-
tion that the folding speed of bigger circuits represents the
bottleneck for the folding rate. Results without application of
threshold tl are displayed in Fig. S10 (ESI†).

Data availability

Data available on request from the authors.
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for proteins: https://github.com/circuittopology/circuit_topology;
Correlation analysis for CT and folding rate: https://github.com/
Barbaraleidenuniv/Topology_analysis. For permissions, please
contact the corresponding author.
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