94 research outputs found

    Universal Features in Phonological Neighbor Networks

    Get PDF
    Human speech perception involves transforming a countinuous acoustic signal into discrete linguistically meaningful units (phonemes) while simultaneously causing a listener to activate words that are similar to the spoken utterance and to each other. The Neighborhood Activation Model posits that phonological neighbors (two forms [words] that differ by one phoneme) compete significantly for recognition as a spoken word is heard. This definition of phonological similarity can be extended to an entire corpus of forms to produce a phonological neighbor network (PNN). We study PNNs for five languages: English, Spanish, French, Dutch, and German. Consistent with previous work, we find that the PNNs share a consistent set of topological features. Using an approach that generates random lexicons with increasing levels of phonological realism, we show that even random forms with minimal relationship to any real language, combined with only the empirical distribution of language-specific phonological form lengths, are sufficient to produce the topological properties observed in the real language PNNs. The resulting pseudo-PNNs are insensitive to the level of lingustic realism in the random lexicons but quite sensitive to the shape of the form length distribution. We therefore conclude that ā€œuniversalā€ features seen across multiple languages are really string universals, not language universals, and arise primarily due to limitations in the kinds of networks generated by the one-step neighbor definition. Taken together, our results indicate that caution is warranted when linking the dynamics of human spoken word recognition to the topological properties of PNNs, and that the investigation of alternative similarity metrics for phonological forms should be a priorit

    US SOLAS Science Report

    Get PDF
    The Surface Ocean ā€“ Lower Atmosphere Study (SOLAS) (http://www.solas-int.org/) is an international research initiative focused on understanding the key biogeochemical-physical interactions and feedbacks between the ocean and atmosphere that are critical elements of climate and global biogeochemical cycles. Following the release of the SOLAS Decadal Science Plan (2015-2025) (BrĆ©viĆØre et al., 2016), the Ocean-Atmosphere Interaction Committee (OAIC) was formed as a subcommittee of the Ocean Carbon and Biogeochemistry (OCB) Scientific Steering Committee to coordinate US SOLAS efforts and activities, facilitate interactions among atmospheric and ocean scientists, and strengthen US contributions to international SOLAS. In October 2019, with support from OCB, the OAIC convened an open community workshop, Ocean-Atmosphere Interactions: Scoping directions for new research with the goal of fostering new collaborations and identifying knowledge gaps and high-priority science questions to formulate a US SOLAS Science Plan. Based on presentations and discussions at the workshop, the OAIC and workshop participants have developed this US SOLAS Science Plan. The first part of the workshop and this Science Plan were purposefully designed around the five themes of the SOLAS Decadal Science Plan (2015-2025) (BrĆ©viĆØre et al., 2016) to provide a common set of research priorities and ensure a more cohesive US contribution to international SOLAS.This report was developed with federal support of NSF (OCE-1558412) and NASA (NNX17AB17G)

    Family-Centered Preventive Intervention for Military Families: Implications for Implementation Science

    Get PDF
    In this paper, we report on the development and dissemination of a preventive intervention, Families OverComing Under Stress (FOCUS), an eight-session family-centered intervention for families facing the impact of wartime deployments. Specific attention is given to the challenges of rapidly deploying a prevention program across diverse sites, as well as to key elements of implementation success. FOCUS, developed by a UCLA-Harvard team, was disseminated through a large-scale demonstration project funded by the United States Bureau of Navy Medicine and Surgery (BUMED) beginning in 2008 at 7 installations and expanding to 14 installations by 2010. Data are presented to describe the range of services offered, as well as initial intervention outcomes. It proved possible to develop the intervention rapidly and to deploy it consistently and effectively

    Mechanisms of Risk and Resilience in Military Families: Theoretical and Empirical Basis of a Family-Focused Resilience Enhancement Program

    Get PDF
    Recent studies have confirmed that repeated wartime deployment of a parent exacts a toll on military children and families and that the quality and functionality of familial relations is linked to force preservation and readiness. As a result, family-centered care has increasingly become a priority across the military health system. FOCUS (Families OverComing Under Stress), a family-centered, resilience-enhancing program developed by a team at UCLA and Harvard Schools of Medicine, is a primary initiative in this movement. In a large-scale implementation project initiated by the Bureau of Navy Medicine, FOCUS has been delivered to thousands of Navy, Marine, Navy Special Warfare, Army, and Air Force families since 2008. This article describes the theoretical and empirical foundation and rationale for FOCUS, which is rooted in a broad conception of family resilience. We review the literature on family resilience, noting that an important next step in building a clinically useful theory of family resilience is to move beyond developing broad ā€œshopping listsā€ of risk indicators by proposing specific mechanisms of risk and resilience. Based on the literature, we propose five primary risk mechanisms for military families and common negative ā€œchain reactionā€ pathways through which they undermine the resilience of families contending with wartime deployments and parental injury. In addition, we propose specific mechanisms that mobilize and enhance resilience in military families and that comprise central features of the FOCUS Program. We describe these resilience-enhancing mechanisms in detail, followed by a discussion of the ways in which evaluation data from the programā€™s first 2Ā years of operation supports the proposed model and the specified mechanisms of action

    US SOLAS Science Report

    Get PDF
    The article of record may be found at https://doi.org/10.1575/1912/27821The Surface Ocean ā€“ Lower Atmosphere Study (SOLAS) (http://www.solas-int.org/) is an international research initiative focused on understanding the key biogeochemical-physical interactions and feedbacks between the ocean and atmosphere that are critical elements of climate and global biogeochemical cycles. Following the release of the SOLAS Decadal Science Plan (2015-2025) (BrĆ©viĆØre et al., 2016), the Ocean-Atmosphere Interaction Committee (OAIC) was formed as a subcommittee of the Ocean Carbon and Biogeochemistry (OCB) Scientific Steering Committee to coordinate US SOLAS efforts and activities, facilitate interactions among atmospheric and ocean scientists, and strengthen US contributions to international SOLAS. In October 2019, with support from OCB, the OAIC convened an open community workshop, Ocean-Atmosphere Interactions: Scoping directions for new research with the goal of fostering new collaborations and identifying knowledge gaps and high-priority science questions to formulate a US SOLAS Science Plan. Based on presentations and discussions at the workshop, the OAIC and workshop participants have developed this US SOLAS Science Plan. The first part of the workshop and this Science Plan were purposefully designed around the five themes of the SOLAS Decadal Science Plan (2015-2025) (BrĆ©viĆØre et al., 2016) to provide a common set of research priorities and ensure a more cohesive US contribution to international SOLAS.This report was developed with federal support of NSF (OCE-1558412) and NASA (NNX17AB17G).This report was developed with federal support of NSF (OCE-1558412) and NASA (NNX17AB17G)

    The ruptured Achilles tendon: operative and non-operative treatment options

    Get PDF
    The Achilles tendon is the strongest and thickest tendon in the human body. Like any other tendon in the body, however, it is susceptible to rupture. Many surgeons advocate early operative repair of the ruptured Achilles tendon, citing decreased re-rupture rates and improved functional outcome. Waiting for surgical repair for longer than one month may lead to inferior functional results postoperatively. Non-operative treatment has higher re-rupture rates as compared to surgically repaired tendons, but may be the treatment of choice in some patients. While for many years, patients were rigidly immobilized in a non-weightbearing cast for 6ā€“8Ā weeks postoperatively, newer studies have shown excellent results with early weightbearing, and this is quickly becoming the standard of care amongst many physicians

    Global Atmospheric Budget of Acetone: Airā€Sea Exchange and the Contribution to Hydroxyl Radicals

    Get PDF
    Acetone is one of the most abundant oxygenated volatile organic compounds (VOCs) in the atmosphere. The oceans impose a strong control on atmospheric acetone, yet the oceanic fluxes of acetone remain poorly constrained. In this work, the global budget of acetone is evaluated using two global models: CAMā€chem and GEOSā€Chem. CAMā€chem uses an online airā€sea exchange framework to calculate the bidirectional oceanic acetone fluxes, which is coupled to a dataā€oriented machineā€learning approach. The machineā€learning algorithm is trained using a global suite of seawater acetone measurements. GEOSā€Chem uses a fixed surface seawater concentration of acetone to calculate the oceanic fluxes. Both model simulations are compared to airborne observations from a recent globalā€scale, multiseasonal campaign, the NASA Atmospheric Tomography Mission (ATom). We find that both CAMā€chem and GEOSā€Chem capture the measured acetone vertical distributions in the remote atmosphere reasonably well. The combined observational and modeling analysis suggests that (i) the ocean strongly regulates the atmospheric budget of acetone. The tropical and subtropical oceans are mostly a net source of acetone, while the highā€latitude oceans are a net sink. (ii) CMIP6 anthropogenic emission inventory may underestimate acetone and/or its precursors in the Northern Hemisphere. (iii) The MEGAN biogenic emissions model may overestimate acetone and/or its precursors, and/or the biogenic oxidation mechanisms may overestimate the acetone yields. (iv) The models consistently overestimate acetone in the upper troposphereā€lower stratosphere over the Southern Ocean in austral winter. (v) Acetone contributes up to 30ā€“40% of hydroxyl radical production in the tropical upper troposphere/lower stratosphere

    Global Atmospheric Budget of Acetone: Air-Sea Exchange and the Contribution to Hydroxyl Radicals

    Get PDF
    Acetone is one of the most abundant oxygenated volatile organic compounds (VOCs) in the atmosphere. The oceans impose a strong control on atmospheric acetone, yet the oceanic fluxes of acetone remain poorly constrained. In this work, the global budget of acetone is evaluated using two global models: CAMā€chem and GEOSā€Chem. CAMā€chem uses an online airā€sea exchange framework to calculate the bidirectional oceanic acetone fluxes, which is coupled to a dataā€oriented machineā€learning approach. The machineā€learning algorithm is trained using a global suite of seawater acetone measurements. GEOSā€Chem uses a fixed surface seawater concentration of acetone to calculate the oceanic fluxes. Both model simulations are compared to airborne observations from a recent globalā€scale, multiseasonal campaign, the NASA Atmospheric Tomography Mission (ATom). We find that both CAMā€chem and GEOSā€Chem capture the measured acetone vertical distributions in the remote atmosphere reasonably well. The combined observational and modeling analysis suggests that (i) the ocean strongly regulates the atmospheric budget of acetone. The tropical and subtropical oceans are mostly a net source of acetone, while the highā€latitude oceans are a net sink. (ii) CMIP6 anthropogenic emission inventory may underestimate acetone and/or its precursors in the Northern Hemisphere. (iii) The MEGAN biogenic emissions model may overestimate acetone and/or its precursors, and/or the biogenic oxidation mechanisms may overestimate the acetone yields. (iv) The models consistently overestimate acetone in the upper troposphereā€lower stratosphere over the Southern Ocean in austral winter. (v) Acetone contributes up to 30ā€“40% of hydroxyl radical production in the tropical upper troposphere/lower stratosphere

    Archive of Darkness:William Kentridge's Black Box/Chambre Noire

    Get PDF
    Situating itself in histories of cinema and installation art, William Kentridge's Black Box/Chambre Noire (2005) raises questions about screens, exhibition space, site-specificity and spectatorship. Through his timely intervention in a debate on Germanyā€™s colonial past, Kentridgeā€™s postcolonial art has contributed to the recognition and remembrance of a forgotten, colonial genocide. This article argues that, by transposing his signature technique of drawings for projection onto a new set of media, Kentridge explores how and what we can know through cinematic projection in the white cube. In particular, his metaphor of the illuminated shadow enables him to animate archival fragments as shadows and silhouettes. By creating a multi-directional archive, Black Box enables an affective engagement with the spectres of colonialism and provides a forum for the calibration of moral questions around reparation, reconciliation and forgiveness
    • ā€¦
    corecore