842 research outputs found
The pressure-amorphized state in zirconium tungstate: a precursor to decomposition
In contrast to widely accepted view that pressure-induced amorphization arises due to kinetic hindrance of equilibrium phase transitions, here we provide evidence that the metastable pressure-amorphized state in zirconium tungstate is a precursor to decomposition of the compound into a mixture of simple oxides. This is from the volume collapse ΔV across amorphization, which is obtained for the first time by measuring linear dimensions of irreversibly amorphized samples during their recovery to the original cubic phase upon isochronal annealing up to 1000 K. The anomalously large ΔV of 25.7 ± 1.2% being the same as that expected for the decomposition indicates that this amorphous state is probably a precursor to kinetically hindered decomposition. A P–T diagram of the compound is also proposed
Pressure induced dimerisation of C<SUB>70</SUB>
Solid C70 has been subjected simultaneously to high pressures and temperatures (HPHT), with pressures upto 7.5 GPa and temperatures upto 750°C. X-ray diffraction measurements on the recovered samples indicate that the initial h.c.p. solid C70 transforms to a rhombohedral structure which recovers to an f.c.c. structure on annealing. The associated changes in the intra molecular vibrational modes have been probed through infrared (IR) and Raman measurements. The IR measurements on these HPHT samples show splitting of some of the pristine modes and occurrence of several new modes. These sharp IR modes in the HPHT treated samples, which are seen to be different from that reported for photopolymerised C70, have been attributed to the formation of C70 dimers
Large Orbital Magnetic Moment and Coulomb Correlation effects in FeBr2
We have performed an all-electron fully relativistic density functional
calculation to study the magnetic properties of FeBr2. We show for the first
time that the correlation effect enhances the contribution from orbital degrees
of freedom of electrons to the total magnetic moment on Fe as
opposed to common notion of nearly total quenching of the orbital moment on
Fe site. The insulating nature of the system is correctly predicted when
the Hubbard parameter U is included. Energy bands around the gap are very
narrow in width and originate from the localized Fe-3 orbitals, which
indicates that FeBr2 is a typical example of the Mott insulator.Comment: 4 pages, 3 figures, revtex4, PRB accepte
A New 5-Flavour LO Analysis and Parametrization of Parton Distributions in the Real Photon
New, radiatively generated, LO quark (u,d,s,c,b) and gluon densities in a
real, unpolarized photon are presented. We perform a global 3-parameter fit,
based on LO DGLAP evolution equations, to all available data for the structure
function F2^gamma(x,Q^2). We adopt a new theoretical approach called ACOT(chi),
originally introduced for the proton, to deal with the heavy-quark thresholds.
This defines our basic model (CJKL model), which gives a very good description
of the experimental data on F2^gamma(x,Q^2), for both Q^2 and x dependences.
For comparison we perform a standard fit using the Fixed Flavour-Number Scheme
(FFNS_CJKL model), updated with respect to the previous fits of this type. We
show the superiority of the CJKL fit over the FFNS_CJKL one and other LO fits
to the F2^gamma(x,Q^2) data. The CJKL model gives also the best description of
the LEP data on the Q^2 dependence of the F2^gamma, averaged over various
x-regions, and the F_2,c^gamma, which were not used directly in the fit.
Finally, a simple analytic parametrization of the resulting parton densities
obtained with the CJKL model is given.Comment: 43 pages, RevTeX4 using axodraw style, 3 tex and 12 postscript
figures, version submitted to Phys. Rev. D, small text changes, one reference
added, FORTRAN program available at http://www.fuw.edu.pl/~pjank/param.html
and at http://www-zeuthen.desy.de/~alorca/id4.htm
Limits on additional planetary companions to OGLE-2005-BLG-390L
We investigate constraints on additional planets orbiting the distant M-dwarf
star OGLE-2005-BLG-390L, around which photometric microlensing data has
revealed the existence of the sub-Neptune-mass planet OGLE-2005-BLG-390Lb. We
specifically aim to study potential Jovian companions and compare our findings
with predictions from core-accretion and disc-instability models of planet
formation. We also obtain an estimate of the detection probability for
sub-Neptune mass planets similar to OGLE-2005-BLG-390Lb using a simplified
simulation of a microlensing experiment. We compute the efficiency of our
photometric data for detecting additional planets around OGLE-2005-BLG-390L, as
a function of the microlensing model parameters and convert it into a function
of the orbital axis and planet mass by means of an adopted model of the Milky
Way. We find that more than 50 % of potential planets with a mass in excess of
1 M_J between 1.1 and 2.3 AU around OGLE-2005-BLG-390L would have revealed
their existence, whereas for gas giants above 3 M_J in orbits between 1.5 and
2.2 AU, the detection efficiency reaches 70 %; however, no such companion was
observed. Our photometric microlensing data therefore do not contradict the
existence of gas giant planets at any separation orbiting OGLE-2005-BLG-390L.
Furthermore we find a detection probability for an OGLE-2005-BLG-390Lb-like
planet of around 2-5 %. In agreement with current planet formation theories,
this quantitatively supports the prediction that sub-Neptune mass planets are
common around low-mass stars.Comment: 10 pages, 4 figures, accepted by A&
A systematic fitting scheme for caustic-crossing microlensing events
We outline a method for fitting binary-lens caustic-crossing microlensing
events based on the alternative model parameterisation proposed and detailed in
Cassan (2008). As an illustration of our methodology, we present an analysis of
OGLE-2007-BLG-472, a double-peaked Galactic microlensing event with a source
crossing the whole caustic structure in less than three days. In order to
identify all possible models we conduct an extensive search of the parameter
space, followed by a refinement of the parameters with a Markov Chain-Monte
Carlo algorithm. We find a number of low-chi2 regions in the parameter space,
which lead to several distinct competitive best models. We examine the
parameters for each of them, and estimate their physical properties. We find
that our fitting strategy locates several minima that are difficult to find
with other modelling strategies and is therefore a more appropriate method to
fit this type of events.Comment: 12 pages, 11 figure
OGLE-2005-BLG-018: Characterization of Full Physical and Orbital Parameters of a Gravitational Binary Lens
We present the analysis result of a gravitational binary-lensing event
OGLE-2005-BLG-018. The light curve of the event is characterized by 2 adjacent
strong features and a single weak feature separated from the strong features.
The light curve exhibits noticeable deviations from the best-fit model based on
standard binary parameters. To explain the deviation, we test models including
various higher-order effects of the motions of the observer, source, and lens.
From this, we find that it is necessary to account for the orbital motion of
the lens in describing the light curve. From modeling of the light curve
considering the parallax effect and Keplerian orbital motion, we are able to
measure not only the physical parameters but also a complete orbital solution
of the lens system. It is found that the event was produced by a binary lens
located in the Galactic bulge with a distance kpc from the Earth.
The individual lens components with masses and are separated with a semi-major axis of AU and
orbiting each other with a period yr. The event demonstrates
that it is possible to extract detailed information about binary lens systems
from well-resolved lensing light curves.Comment: 19 pages, 6 figure
OGLE-2005-BLG-071Lb, the Most Massive M-Dwarf Planetary Companion?
We combine all available information to constrain the nature of
OGLE-2005-BLG-071Lb, the second planet discovered by microlensing and the first
in a high-magnification event. These include photometric and astrometric
measurements from Hubble Space Telescope, as well as constraints from higher
order effects extracted from the ground-based light curve, such as microlens
parallax, planetary orbital motion and finite-source effects. Our primary
analysis leads to the conclusion that the host of Jovian planet
OGLE-2005-BLG-071Lb is an M dwarf in the foreground disk with mass M= 0.46 +/-
0.04 Msun, distance D_l = 3.3 +/- 0.4 kpc, and thick-disk kinematics v_LSR ~
103 km/s. From the best-fit model, the planet has mass M_p = 3.8 +/- 0.4 M_Jup,
lies at a projected separation r_perp = 3.6 +/- 0.2 AU from its host and so has
an equilibrium temperature of T ~ 55 K, i.e., similar to Neptune. A degenerate
model less favored by \Delta\chi^2 = 2.1 (or 2.2, depending on the sign of the
impact parameter) gives similar planetary mass M_p = 3.4 +/- 0.4 M_Jup with a
smaller projected separation, r_\perp = 2.1 +/- 0.1 AU, and higher equilibrium
temperature T ~ 71 K. These results from the primary analysis suggest that
OGLE-2005-BLG-071Lb is likely to be the most massive planet yet discovered that
is hosted by an M dwarf. However, the formation of such high-mass planetary
companions in the outer regions of M-dwarf planetary systems is predicted to be
unlikely within the core-accretion scenario. There are a number of caveats to
this primary analysis, which assumes (based on real but limited evidence) that
the unlensed light coincident with the source is actually due to the lens, that
is, the planetary host. However, these caveats could mostly be resolved by a
single astrometric measurement a few years after the event.Comment: 51 pages, 12 figures, 3 tables, Published in Ap
- …