PRESSURE INDUCED DIMERISATION OF C70

M. Premila," C.S. Sundar,"'* P. Ch. Sahu," A. Bharathi," Y. Hariharan, D.V.S. Muthu^b and A.K. Sood^b

"Materials Science Division, Indira Gandhi Centre for Atomic Research, Kalpakkam-603 102, India ^bDepartment of Physics, Indian Institute of Science, Bangalore 560 012, India

Solid C_{70} has been subjected simultaneously to high pressures and temperatures (HPHT), with pressures upto 7.5 GPa and temperatures upto 750°C. X-ray diffraction measurements on the recovered samples indicate that the initial h.c.p. solid C_{70} transforms to a rhombohedral structure which recovers to an f.c.c. structure on annealing. The associated changes in the intra molecular vibrational modes have been probed through infrared (**IR**) and Raman measurements. The IR measurements on these HPHT samples show splitting of some of the pristine modes and occurrence of several new modes. These sharp IR modes in the HPHT treated samples, which are seen to be different from that reported for photopolymerised C_{70} , have been attributed to the formation of C_{70} dimers. © 1997 Published by Elsevier Science Ltd

Keywords: A. fullerenes, D. phase transitions, D. optical properties.

1. INTRODUCTION

The synthesis of polymeric fullerenes from solid state precursors and an investigation of their properties has been a topic of considerable interest [1], since the first report of polymerisation of C_{60} film under laser irradiation [2]. Polymerisation of C₆₀ has been observed [3] in Rb_1C_{60} and K_1C_{60} , as also in pristine C_{60} when subjected to high pressure (~ 5 GPa) and high temperature (-800°C) treatment [4-7]. Polymeric fullerenes consist of covalently bonded cages which are arranged in linear chains or two-dimensional sheets. The chains can be as short as dimers. but can also extend to many units. Polymerisation in C_{60} is associated with the (2+2)cycloaddition reaction [2], wherein the parallel double bonds of the neighbouring molecules react to form polymerised structure, linked through a four-membered cyclobutane ring. Under different conditions of pressure and temperature, f.c.c. C₆₀ is seen to transform to various polymerised structures, such as an orthorhombic structure consisting of one-dimensional polymeric chain or rhombohedral and tetragonal structures consisting of two-dimensional polymeric layers [6].

In contrast to extensive investigations on the polymerisation of C₆₀, there have been fewer studies on C_{70} . It has been shown that C_{70} can be photopolymerised [8, 9], albeit with a much lower efficiency compared to C_{60} and more recently there has been evidence [10] for cross linking of C₇₀ molecules in Ar plasma. The difficulty in the polymerisation of C₇₀ has been attributed to the topochemical constraints specific to the C_{70} molecule [8] in that only the double bonds on the polar caps of the molecule are reactive, whereas the cyclic double bonds on the equatorial belt are ineffective in undergoing (2+2) cycloaddition reaction. For the polymerisation reaction to occur in C70 under HPHT conditions, as in the case of C_{60} , it is necessary that the parallel configurations of C=C double bonds of the neighbouring molecules be brought close together under compression. In the case of solid C₂₀, it is known [11] that there are two orientational ordering transitions, one corresponding to the free rotor phase going to a long axis oriented rhombohedral phase and the second corresponding to a completely oriented C₇₀ in the monoclinic phase. Both these transitions are influenced by pressure [12, 13]; the rhombohedral to f.c.c. transition temperature increases at the rate of 300 K GPa⁻¹, whereas the monoclinic to rhombohedral transition temperature increases at a much slower rate of 50 K GPa⁻¹.

^{*}Author to whom all correspondence should be addressed.

Thus, depending on the high pressure and temperature conditions employed, solid C_{70} could be in different orientationally ordered states, which would influence the possibility of polymerisation. This together with the topochemical features of the C_{70} molecule was used to rationalise the non-observance of polymerisation in our earlier investigations [7] on HPHT treated C_{70} , which had been carried out over a limited range of pressure and temperature.

In the present study, which is a continuation of our earlier work [7], we have spanned a wider range of pressure-temperature regimes, viz., P = 1-7.5 GPa and $T = RT - 750^{\circ}C$, to look for conditions that would favour polymerisation. In particular, we have investigated the influence of keeping the system at high pressure (7.5 GPa) and low temperature (RT), and low pressure (1 GPa) and high temperature (750°C), wherein solid C_{70} is expected to be in monoclinic and rhombohedral structures respectively. The structural information on the HPHT treated samples has been obtained through X-ray diffraction measurements and the intramolecular vibrational modes have been probed by Raman and IR measurements. The significant result of the present investigations is the dramatic splitting of IR modes in the HPHT treated samples [14], which is seen to recover to pristine modes on annealing. In order to find out if this splitting of IR modes is associated with the formation of orientationally ordered C₇₀, in situ IR measurements across the low temperature orientational ordering transitions [11] in pristine C₇₀ have also been carried out. With support from these experiments and Raman measurements, the observed splitting of IR modes in the HPHT treated samples has been attributed to the formation of C_{70} dimers [15].

2. EXPERIMENTAL DETAILS

Chromatographically purified polycrystalline C₇₀ powder was synthesised using the procedure described in [16] and this was heat treated in vacuum at 250°C for over 24 h to get rid of the trapped organic solvents. A pellet of 3 mm diameter and 2 mm thickness, wrapped in a 7.5 µm stainless steel foil, was mounted along with steatite disks inside a pyrophyllite gasket containing a small annular graphite ring heater and this assembly was loaded into an opposed anvil high pressure apparatus [17]. This whole procedure, which was carried out under ambient conditions, entailed an exposure of the samples to atmospheric oxygen for a period of $-30 \min$, before being sealed between the gaskets. After raising the pressure upto 7.5 GPa maximum, over a period of 10 min, the temperature was increased upto a maximum of 750°C. The sample was allowed to soak under high pressure and temperature for -6 h, following which the

temperature was lowered gradually and the pressure was subsequently released slowly. X-ray diffraction measurements on finely chopped pellets were carried out using Siemens D-500 diffractometer operating in the Bragg– Brentano arrangement. Raman measurements were carried out, under ambient conditions, using DILOR X-Y spectrometer with liquid nitrogen cooled CCD detector. Infrared absorbtion spectra were recorded using a Bomem (Model MB 100) FTIR spectrometer, on samples pelletized with KBr. Thin films of C_{70} , vacuum deposited on single crystal KBr substrates, were used for low temperature FTIR measurements, the temperatures being achieved using a Leybold Heraeus closed cycle helium refrigerator.

3. RESULTS AND DISCUSSION

Figure 1(a) shows X-ray diffraction (XRD) patterns of the pristine C_{70} and those treated at various pressures

Fig. 1. (a) X-ray diffractograms of the starting C_{70} powder, indexed to h.c.p. structure and those of samples treated at various pressures at 750°C, indexed to rhombohedral structure. The XRD pattern of HPHT treated samples subsequently annealed in vacuum at 250°C is indexed *to* f.c.c. structure. (b) XRD pattern of C_{70} treated at various temperatures at 7.5 GPa. Note the shift of the RT and 100°C treated spectra towards smaller 2θ values, which are indexable to rhombohedral structure.

at 750°C. The XRD pattern of the starting C7, powder can be indexed to h.c.p. structure with lattice parameter a = 10.60Å and c = 17.26Å, consistent with earlier studies [18]. In the case of the HPHT treated samples, broad diffraction lines corresponding to a new crystalline phase is observed. As reported earlier [7] these could be indexed to a rhombohedral structure (space group $R\bar{3}m$) with the hexagonal lattice parameters, a = 10.10Å and c = 26.88 A. In the course of our studies on various HPHT treated C_{70} , we observed that in case of samples treated at higher pressure (7.5 GPa) and low temperature, viz., RT and 100°C, the diffraction pattern was shifted towards smaller angles, as shown in Fig. 1(b). Correspondingly these could be fitted to a rhombohedral structure with a marginally expanded lattice parameters (a = 10.23 Å and c = 27.56 Å) as compared to the rest of the samples. The rhombohedral structure obtained after HPHT treatments were seen to transform to f.c.c. structure $(Fm\bar{3}m)$ with a = 14.94Å on annealing at 250°C for 24 h, as shown in the top panel of Fig. 1(a).

The broad diffraction patterns of the HPHT treated C₇₀ were not amenable to a detailed structural analysis, in particular to obtain information on the formation of intra molecular bonds. In order to find out if the rhombohedral structure corresponds to a polymeric phase, we have estimated the inter-fullerene distance. It must be remarked that in the case of polymeric C₆₀ obtained by HPHT treatment, there is a distinct reduction [6, 7] in the interfullerene distance to 2.2 Å, from 3 Å in the f.c.c. phase, providing a strong evidence for the formation of intra-molecular bonds. With the known [181 molecular dimensions of C₇₀ and assuming that the C₇₀ molecules are aligned along the long axis, the smallest distance between the double bonds on polar caps of neighbouring C_{70} molecules at (0, 0, 0) and (2/3, 1/3, 1/3) can be estimated [7] to be 2.61 Å, while the distance between the equatorial double bonds is 3.01 Å. These interfullerene distances in the rhombohedra1 phase are not significantly different from that in the starting h.c.p. phase or the annealed f.c.c. phase [18]. Thus, our X-ray diffraction measurements do not provide any direct evidence for the polymerisation of C₇₀. We may also point out that qualitatively different diffraction patterns have been obtained for polymerised C₇₀ obtained by other methods: For example, an amorphous XRD pattern has been obtained [10] in the study of plasma polymerised C70 and Rao et al. [9] have observed an increase in lattice parameter on UV polymerisation of f.c.c. C70 film. While these differences need to be investigated in more detail, they point out to a greater variety in structures possible in the linking of C_{70} molecules.

Figure 2 shows the results of IR studies on pristine C_{70} and those treated at 750°C at various pressures. In

Fig. 2. IR spectra of pristine and C_{70} treated at various pressures at 750°C. The split IR pattern are seen to recover to pristine modes on annealing at 250°C. The IR modes marked with * correspond to Raman modes measured at T = 23 K [23].

comparison with the IR spectrum of pristine C_{70} , which is in conformity with earlier results [19, 20], in the HPHT treated samples the IR spectrum has developed fine structure and several new modes have appeared. This is particularly striking in the low wave number region: For example, the pristine modes at 641 cm^{-1} develops new features on either sides, the pristine mode at 458 cm^{-1} is seen to develop a feature on the high wave number side at 467 cm⁻¹ while the mode at 794 cm⁻¹ is associated with an additional mode on the lower wave number side at 776 cm^{-1} . In addition, new modes are seen to emerge in the spectra of the HPHT treated samples, for example the mode at 605 cm^{-1} . It is noted that similar features are seen in all the pressure treated samples. Since some of the modes in the HPHT treated sample are coincident with those of pristine C_{70} , it is possible that there is some untransformed material. While, we have not carried out quantitative studies on the solubility of HPHT treated samples in toluene, which provides an indicator of the residual C₇₀, it was generally observed that the solubility of the pressure treated samples were much lower compared to pristine C₇₀. The sharp split IR spectrum of HPHT treated samples are seen to recover to the modes of pristine C70 on annealing at 250°C as shown in the top panel of Fig. 2.

It was noted earlier that treatment at 7.5 GPa at low temperatures (RT and **100°C)** resulted in a rhombohedral structure with marginally larger lattice parameters

as compared to that obtained on treatment at high temperatures, beyond 250°C [cf. Fig. 1(b)]. Select results of IR measurements on the samples treated at 7.5 GPa are shown in Fig. 3. It is noted that whereas in the case of sample treated at 250°C a split IR spectrum similar to that in Fig. 2 is obtained, in the case of sample treated at RT, the IR spectrum is unsplit and is similar to pristine C_{70} . This difference is striking and as we shall see below, has a bearing on the interpretation of the origin of the split IR spectra.

The changes in the vibrational modes on HPHT treatment of C_{70} have also been probed using Raman spectroscopy. Figure 4(a) and (b) shows the results of Raman measurements. In the case of HPHT treated samples, the Raman spectra are not very different from that of pristine C_{70} [19], except for a shoulder at 1426 cm⁻¹, to the left of the 1444 cm⁻¹ peak and a weak new feature at 278 cm⁻¹ to the right of the Raman spectra are to be contrasted with the dramatic splitting of IR spectra in HPHT treated C_{70} . It may be noted [4, 7, 21] that even in the case of pressure polymerised C_{60} the changes in IR spectra.

In the following, we analyse the origin of the sharp-split IR spectrum in C_{70} treated at 1 GPa, 750°C. At the outset, we may attribute the splitting of IR modes to a change in the site symmetry associated with the

Fig. 4. Raman spectra of pristine and C_{70} treated at various pressures at 750°C, in the range (a) 200–900 cm⁻¹ and (b) 1150–1650cm⁻¹. Note the development of new mode at 1426 cm⁻¹ and 278 cm⁻¹.

structural transformation from the initial h.c.p. to the rhombohedral structure. However, in this assignment we encounter a difficulty in that splitting is not seen in the case of sample treated at 7.5 GPa, RT (cf. Fig. 3), in which case also the sample has a rhombohedral structure [cf. Fig. 1(b)]. In order to explore further if the splitting of IR pattern is in any way related to the structural transition [11] associated with the orientational ordering of C₇₀ molecules, we have also carried out IR measurements on pristine C₇₀ films on KBr substrates at low temperatures up to 12 K. These results are shown in Fig. 5. It is seen that with the decrease of temperature, while there is a systematic decrease in the line widths of most of the IR modes, the modes at 458 and 565 cm^{-1} show indications of broadening and splitting and these results are in conformity with earlier studies [22]. These small changes in the IR spectra at low temperatures are to be contrasted with the large splitting and occurrence of several new modes in the IR spectra (cf. Fig. 2) in the case of HPHT treated C70. This clearly indicates that the features seen in the IR spectra of HPHT treated samples is not related to the structural transition involving orientationally ordered C₇₀ monomers.

Fig. 5. IR spectra of pristine C_{70} at various temperatures. The modes at 458 and 565 cm⁻¹ broaden at low temperatures, whereas the other modes **are** seen to sharpen.

In trying to find out if the split IR modes are associated with the formation of polymeric phase, we were led to compare with the earlier IR measurements[8] on photopolymerised C_{70} . The only distinctive feature in the IR spectrum of photopolymerised C_{70} , is a broad band centered at 1086 cm⁻¹, which incidentally is also seen in photopolymerised C_{60} and has been attributed to disorder [9]. Our IR spectra of HPHT treated C_{70} , shown in Figs 2 and 3, are very different from that reported [8] for photopolymerised C_{70} .

Given that the IR spectrum of HPHT treated C₇₀ is distinct from that of photopolymerised C_{70} and monomeric C₇₀ in orientationally ordered state, it is tempting to speculate that the splitting of IR modes arises due to the formation of C_{70} dimers. In support of this speculation, we may point out that some of the new modes, marked with asterisks in Fig. 2 can be identified with the Raman modes of C70 measured at low temperature [23]. Further, the mode at 1426 cm^{-1} seen in Rarnan spectra [cf. Fig. 4(b)] can be associated with the dominant IR mode at 1430 cm^{-1} . It is well known [24] that Raman modes and IR modes are no longer strictly complimentary once the inversion symmetry is broken, i.e. Raman modes are also observed in the infrared spectrum and vice versa. In fact such an argument has been used to identify C_{60} dimer in Rb_1C_{60} [25]. To obtain more definitive confirmation on the formation of C₇₀ dimers under HPHT treatment, detailed theoretical analysis of the vibrational spectrum of C_{70} dimers are called for, as has been done recently [21] for dimers of C₆₀.

To summarise, our present studies on solid C₂₀ treated at high pressure and temperatures ($>250^{\circ}C$), indicate transformation to a rhombohedral structure and this is associated with sharp split IR spectra. These IR spectra, which are different from that seen in photopolymerised C₇₀ and in orientationally ordered monomeric C₇₀ have been attributed to the formation of C_{70} dimers. In the case of C_{70} treated at high pressure (7.5 GPa) and low temperatures (RT and 100°C), the IR spectra are similar to that in pristine C_{70} . This is consistent with our initial premise that under these treatment conditions, solid C₇₀ can be expected to be in monoclinic structure, whose orientational order is not conducive to the formation of covalent linkages between molecules. In our earlier studies [7], we had inferred that C₇₀ does not polymerise, based on a limited scan of pressure and temperature range. Further, in these studies, the vibrational modes were mainly monitored through Raman measurements, which as we have seen presently is far less sensitive to the formation of intra molecular bonds. Our present conclusion on the dimerisation of C_{70} on HPHT treatment is principally based on dramatic changes seen in the IR spectra.

The formation of only the dimers in the case of HPHT treated **c70** is to be contrasted with the Occurrence of polymeric chains and sheets in the case of similarly treated C_{60} [6, 7]. This may be due to the stereochemical constraints, specific to C_{70} molecule, which prohibit the formation of long range ordered chains. Alternatively, it is possible that C_{70} polymers have limited metastability in that they break up during the slow cooling and release of pressure after HPHT treatment. Further investigations on pressure quenched C_{70} , instead of slow cooling as in the present series of experiments, will be of interest.

Acknowledgements – The authors would like to thank V. Vidhya, K. Sankaran, K.S. Viswanathan, G.V.N. Rao, V.S. Sastry and T.S. Radhakrishnan for their help with respect to IR and X-ray diffraction measurements. One of us (AKS) would like to thank the Department of Science and Technology for their financial support.

REFERENCES

- Fischer, J.E., *Science*, **264**, 1994, 1548; see also Rao, A.M. and Eklund, P.C., in *Cluster Assembled Materials* (Edited by Klaus Sattler), Materials Science Forum, **232**, 1996, 173.
- 2. Rao, A.M. et al., Science, 259, 1993, 955.
- 3. Chauvert, O. etal., Phys. Rev. Lett., 72, 1994,2721.
- 4. Iwasa, Y. et al., Science, 264, 1994, 1570.
- 5. Nunez-Regueiro, M. et al., Phys. Rev. Lett., 74, 1995.278.
- 6. Marques, L. etal., Phys. Rev., B54, 1996, R12633.
- 7. Sundar, C.S. et al., Phys. Rev., **B53**, 1996, 8180.
- 8. Rao, A.M. etal., Chem. Phys. Lett., 224,1994,106.
- 9. Rao, C.N.R. etal., J. Phys. Chem., 99,1995,16814.

- 10. Atta, M. et al., J. Phys. Chem., B101, 1997, 5.
- Verheijen, M.A. et al., Chem. Phys., 166, 1992, 287; Vaughan, G.B.M. et al., Chem. Phys., 178, 1993,599.
- 12. Kawamura, H. ef al., Solid State Commun., 83, 1992, 563.
- 13. Lundin, Solatov, A. and Sundqvist, B., *Europhys. Lett.*, **30**, 1995, 469.
- 14. Premila, M. et al., Proc. DAE Solid State Physics Symposium, BARC, Bombay, **39C**, 1996, 342.
- For a preliminary account of this, see, Sundar, C.S. et al., in Proc. Conference on Frontiers in Materials Modelling and Design, Kalpakkam, Aug. 1996 (Edited by V. Kumar et at.). Springer-Verlag (in print).
- 16. Hariharan, Y. et al., Curr. Sci., 63, 1992, 65.
- 17. Govindarajan, K. et al., Ind. J. Pure and Appl. Phys., 27, 1989, 461.
- 18. Valsakumar, M.C. et al., Phys. Rev., **B48**, 1993, 9080.
- 19. Bethune, D.S. et al., Chem. Phys. Lett., **179**, 1991, 181.
- Ragavachari, K. and Rohlfing, C.M., J. Phys. Chem., 95, 1991, 5768; Jishi, R.A. et al., Chem. Phys. Lett., 206, 1993, 187.
- Venkateswaran, U.D. et al., Phys. Status Solidi, 198, 1996, 545; Rao, A.M. et al., Phys. Rev. B. (submitted).
- 22. Varma, Vijay et al., Chem. Phys. Lett., **203**, 1993, 545.
- 23. van Loosdrecht, P.H.M. *et al.*, *Phys. Rev.*, **B47**, 1993,7610.
- 24. Cotton, F.A., *Chemical Applications* of *Group Theory*. Wiley-Eastern, New Delhi, 1970.
- 25. Martin, M.C. etal., Phys. Rev., B51, 1995, 3210.