2,450 research outputs found

    A superconducting levitation transport model system for dynamical and didactical studies

    Get PDF
    Superconducting levitation transport systems might become very attractive in the near future due to various reasons. The realisation of contactless systems allows e.g. extended maintenance-free operation with high efficiency since such a system only needs energy for cooling and propulsion. We established a small superconducting levitation transport model system called "SupraTrans Mini" consisting of permanent magnetic rails and a levitated vehicle including four YBCO-bulk samples in a cryostat. The rail system consists of an oval shaped loop (2.90 m x 1.44 m), which was build up from individual linear and curved track modules. Inside the vehicle position variations of the superconductors are possible. By means of velocity, acceleration and temperature measurements different dynamical aspects of our complex levitation system can be investigated. We also show the broad applicability of the experimental setup for didactical studies in physics

    Applications of Information Theory to Analysis of Neural Data

    Full text link
    Information theory is a practical and theoretical framework developed for the study of communication over noisy channels. Its probabilistic basis and capacity to relate statistical structure to function make it ideally suited for studying information flow in the nervous system. It has a number of useful properties: it is a general measure sensitive to any relationship, not only linear effects; it has meaningful units which in many cases allow direct comparison between different experiments; and it can be used to study how much information can be gained by observing neural responses in single trials, rather than in averages over multiple trials. A variety of information theoretic quantities are commonly used in neuroscience - (see entry "Definitions of Information-Theoretic Quantities"). In this entry we review some applications of information theory in neuroscience to study encoding of information in both single neurons and neuronal populations.Comment: 8 pages, 2 figure

    The causal role between phasic midbrain dopamine signals and learning

    Get PDF
    The article discusses how phasic dopamine (DA) may relate to action selection, goal-directed behavior, and behavioral flexibility of a mice. It states that optogenetic targeting of midbrain DA cells and striatal projections showed role in reward prediction and behavioral flexibility. It notes that DA activity regulates aspects related to appetitive reward learning. It mentions that DA is causally involved in flexible behavioral adaptations that occur due to changes in stimulus-reward incident

    Emerging executive functioning and motor development in infants at high and low risk for autism spectrum disorder

    Get PDF
    Existing evidence suggests executive functioning (EF) deficits may be present in children with autism spectrum disorder (ASD) by 3 years of age. It is less clear when, prior to 3 years, EF deficits may emerge and how EF unfold over time. The contribution of motor skill difficulties to poorer EF in children with ASD has not been systematically studied. We investigated the developmental trajectory of EF in infants at high and low familial risk for ASD (HR and LR) and the potential associations between motor skills, diagnostic group, and EF performance. Participants included 186 HR and 76 LR infants. EF (A-not-B), motor skills (Fine and Gross Motor), and cognitive ability were directly assessed at 12 months and 24 months of age. Participants were directly evaluated for ASD at 24 months using DSM-IV-TR criteria and categorized as HR-ASD, HR-Negative, and LR-Negative. HR-ASD and HR-Negative siblings demonstrated less improvement in EF over time compared to the LR-Negative group. Motor skills were associated with group and EF performance at 12 months. No group differences were found at 12 months, but at 24 months, the HR-ASD and HR-Negative groups performed worse than the LR-Negative group overall after controlling for visual reception and maternal education. On reversal trials, the HR-ASD group performed worse than the LR-Negative group. Motor skills were associated with group and EF performance on reversal trials at 24 months. Findings suggest that HR siblings demonstrate altered EF development and that motor skills may play an important role in this process

    Probing the link between biodiversity-related knowledge and self-reported pro-conservation behaviour in a global survey of zoo visitors

    Get PDF
    Many environmental communication interventions are built on the assumption that increased knowledge will lead to changes in proenvironment behaviors. Our study probes the link between biodiversity-related knowledge and self-reported proconservation behavior, based on the largest and most international study of zoo visitors ever conducted. In total, 6,357 visitors to 30 zoos from 19 countries around the globe participated in the study. Biodiversity understanding and knowledge of actions to help protect biodiversity were significantly related, but only 0.6% of the variation in knowledge of actions to help protect biodiversity could be explained by those same respondents’ biodiversity understanding. Biodiversity understanding was only the sixth most important variable in significantly predicting knowledge of actions to help protect biodiversity. Moreover, biodiversity understanding was the least important variable of those that were significantly related to self-reported proconservation behavior. Our study indicates that knowledge is a real, but relatively minor, factor in predicting whether members of the public – zoo visitors in this case – will know about specific proenvironment behaviors they can take, let alone whether they will actually undertake such behaviors

    Ventromedial Prefrontal Cortex Activation Is Associated with Memory Formation for Predictable Rewards

    Get PDF
    During reinforcement learning, dopamine release shifts from the moment of reward consumption to the time point when the reward can be predicted. Previous studies provide consistent evidence that reward-predicting cues enhance long-term memory (LTM) formation of these items via dopaminergic projections to the ventral striatum. However, it is less clear whether memory for items that do not precede a reward but are directly associated with reward consumption is also facilitated. Here, we investigated this question in an fMRI paradigm in which LTM for reward-predicting and neutral cues was compared to LTM for items presented during consumption of reliably predictable as compared to less predictable rewards. We observed activation of the ventral striatum and enhanced memory formation during reward anticipation. During processing of less predictable as compared to reliably predictable rewards, the ventral striatum was activated as well, but items associated with less predictable outcomes were remembered worse than items associated with reliably predictable outcomes. Processing of reliably predictable rewards activated the ventromedial prefrontal cortex (vmPFC), and vmPFC BOLD responses were associated with successful memory formation of these items. Taken together, these findings show that consumption of reliably predictable rewards facilitates LTM formation and is associated with activation of the vmPFC

    Parental transfer of the antimicrobial protein LBP/BPI protects Biomphalaria glabrata eggs against oomycete infections

    Get PDF
    Copyright: © 2013 Baron et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Funding: This work was funded by ANR (ANR-07-BLAN-0214 and ANR-12-EMMA-00O7-01), CNRS and INRA. PvW was financially supported by the BBSRC. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewedPublisher PD

    Genetic inhibition of neurotransmission reveals role of glutamatergic input to dopamine neurons in high-effort behavior

    Get PDF
    Midbrain dopamine neurons are crucial for many behavioral and cognitive functions. As the major excitatory input, glutamatergic afferents are important for control of the activity and plasticity of dopamine neurons. However, the role of glutamatergic input as a whole onto dopamine neurons remains unclear. Here we developed a mouse line in which glutamatergic inputs onto dopamine neurons are specifically impaired, and utilized this genetic model to directly test the role of glutamatergic inputs in dopamine-related functions. We found that while motor coordination and reward learning were largely unchanged, these animals showed prominent deficits in effort-related behavioral tasks. These results provide genetic evidence that glutamatergic transmission onto dopaminergic neurons underlies incentive motivation, a willingness to exert high levels of effort to obtain reinforcers, and have important implications for understanding the normal function of the midbrain dopamine system.Fil: Hutchison, M. A.. National Institutes of Health; Estados UnidosFil: Gu, X.. National Institutes of Health; Estados UnidosFil: Adrover, Martín Federico. National Institutes of Health; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; ArgentinaFil: Lee, M. R.. National Institutes of Health; Estados UnidosFil: Hnasko, T. S.. University of California at San Diego; Estados UnidosFil: Alvarez, V. A.. National Institutes of Health; Estados UnidosFil: Lu, W.. National Institutes of Health; Estados Unido
    corecore