384 research outputs found

    Degradation Risk Assessment: Understanding the Impacts of Climate Change on Geoheritage

    Get PDF
    Several factors and processes, both natural and anthropogenic, can threaten the integrity of any geosite, leading to their degradation. For this reason, geoheritage degradation risks should be considered a fundamental step in any geoconservation strategy, all the more when the aim is to tackle the effects of climate change. The present work proposes a quantitative methodology for the degradation risk assessment of geosites by considering the extrinsic factors that can damage the geoheritage. The methodology has been tested on the Maltese Islands, where considerable previous research has been undertaken in order to highlight the international significance of the Maltese landscapes. Three criteria to assess the degradation risk are proposed: natural vulnerability, anthropogenic vulnerability and public use. For each criterion, several parameters have been identified in order to propose a detailed numerical evaluation. The results show that the degradation risk of geosites is mainly related to negligence and lack of knowledge of its inherent geological heritage, and which leads to public misuse and mismanagement of the geosites. The results give an overview of the condition of the geosites and provide information for the design and management of suitable protection measures, especially in the light of future threats related to climate change

    Degradation risk assessment: understanding the impacts of climate change on geoheritage

    Get PDF
    Several factors and processes, both natural and anthropogenic, can threaten the integrity of any geosite, leading to their degradation. For this reason, geoheritage degradation risks should be considered a fundamental step in any geoconservation strategy, all the more when the aim is to tackle the effects of climate change. The present work proposes a quantitative methodology for the degradation risk assessment of geosites by considering the extrinsic factors that can damage the geoheritage. The methodology has been tested on the Maltese Islands, where considerable previous research has been undertaken in order to highlight the international significance of the Maltese landscapes. Three criteria to assess the degradation risk are proposed: natural vulnerability, anthropogenic vulnerability and public use. For each criterion, several parameters have been identified in order to propose a detailed numerical evaluation. The results show that the degradation risk of geosites is mainly related to negligence and lack of knowledge of its inherent geological heritage, and which leads to public misuse and mismanagement of the geosites. The results give an overview of the condition of the geosites and provide information for the design and management of suitable protection measures, especially in the light of future threats related to climate change.Project “Training new generations on geomorphology, geohazards and geoheritage through Virtual Reality Technologies” (GeoVT), funded by the Erasmus+ Programme, KA220 (Agreement number: 2021-1-SE01-KA220-HED-000032142). The research has also benefitted from the FAR2021 Project of the University of Modena and Reggio Emilia (Project responsible: Paola Coratza

    Temperature response of ex-situ greenhouse gas emissions from tropical peatlands: Interactions between forest type and peat moisture conditions

    Get PDF
    Climate warming is likely to increase carbon dioxide (CO2) and methane (CH4) emissions from tropical wetlands by stimulating microbial activity, but the magnitude of temperature response of these CO2 and CH4 emissions, as well as variation in temperature response among forest types, is poorly understood. This limits the accuracy of predictions of future ecosystem feedbacks on the climate system, which is a serious knowledge gap as these tropical wetland ecosystems represent a very large source of greenhouse gas emissions (e.g. two-thirds of CH4 emissions from natural wetlands are estimated to be from tropical systems). In this study, we experimentally manipulated temperatures and moisture conditions in peat collected from different forest types in lowland neotropical peatlands in Panama and measured how this impacted ex-situ CO2 and CH4 emissions. The greatest temperature response was found for anaerobic CH4 production (Q10 = 6.8), and CH4 consumption (mesic conditions, Q10 = 2.7), while CO2 production showed a weaker temperature response (Q10 2 production was found under flooded oxic conditions. Net emissions of CO2 and CH4 were greatest from palm forest under all moisture treatments. Furthermore, the temperature response of CH4 emissions differed among dominant vegetation types with the strongest response at palm forest sites where fluxes increased from 42 ± 25 to 2166 ± 842 ng CH4 g−1 h−1 as temperatures were raised from 20 to 35 °C. We conclude that CH4 fluxes are likely to be more strongly impacted by higher temperatures than CO2 fluxes but that responses may differ substantially among forest types. Such differences in temperature response among forest types (e.g. palm vs evergreen broad leaved forest types) need to be considered when predicting ecosystem greenhouse gas responses under future climate change scenarios

    Geomorphology of the north-eastern coast of Gozo (Malta, Mediterranean Sea)

    Get PDF
    The paper presents a geomorphological map of the north-eastern coast of the Island of Gozo (Malta) integrating inland and offshore areas at the scale 1:15,000. The map derives from the integration of different methods, such as aerial photo interpretation, field surveys and analysis of seafloor bathymetry. The landforms identified on land were shaped by coastal, fluvial, karst and gravity-induced processes, and some of them prolong on the seafloor. Most of the submerged landforms appear to have been modelled in subaerial conditions during sea-level lowstands, having been sealed by the rising sea in post-glacial times. Two sketches accompany the Main Map showing the type and distribution of coastal geomorphotypes and the land cover of the area

    Potential Sea Level Rise Inundation in the Mediterranean: From Susceptibility Assessment to Risk Scenarios for Policy Action

    Get PDF
    Coastal ecosystems and anthropic activities are prone to be affected by the negative impact of marine-related processes induced by climate change, such as erosion, flooding and permanent inundation. Studies aiming at defining potential risk scenarios represent a valuable tool for the identification of the most suitable coastal adaptation measures. After outlining sea level rise implications at the Mediterranean scale, this paper deals with inundation risk scenarios for the years 2050 and 2100 for the north-eastern sector of the Island of Gozo (Malta), central Mediterranean Sea. The analysis, carried out by applying an index-based procedure, firstly required the evaluation of the susceptibility to inundation of the investigated coastal stretch under different sea level projections. Then, the spatial combination of inundation susceptibility with the exposure and vulnerability of the area allowed identification of the most critical sectors in terms of coastal risk. The results of the analysis showed that, under the worst-case climate scenarios, 5.5% and 8.1% of the investigated coastal sector are prone to very high inundation risk (Class R4) in 2050 and 2100, respectively. In particular, the bays of Ramla and Marsalforn, which are characterized by significant economic and touristic activities, were found to be the sites where the expected impacts of future sea level rise will be higher if no management strategy and adaptation action are taken in the near future

    Assessment of human influenza pandemic scenarios in Europe

    Get PDF
    The response to the emergence of the 2009 influenza A(H1N1) pandemic was the result of a decade of pandemic planning, largely centred on the threat of an avian influenza A(H5N1) pandemic. Based on a literature review, this study aims to define a set of new pandemic scenarios that could be used in case of a future influenza pandemic. A total of 338 documents were identified using a searching strategy based on seven combinations of keywords. Eighty-three of these documents provided useful information on the 13 virus-related and health-system-related parameters initially considered for describing scenarios. Among these, four parameters were finally selected (clinical attack rate, case fatality rate, hospital admission rate, and intensive care admission rate) and four different levels of severity for each of them were set. The definition of six most likely scenarios results from the combination of four different levels of severity of the four final parameters (256 possible scenarios). Although it has some limitations, this approach allows for more flexible scenarios and hence it is far from the classic scenarios structure used for pandemic plans until 2009
    corecore