214 research outputs found

    Experimental and analytical studies of flow through a ventral and axial exhaust nozzle system for STOVL aircraft

    Get PDF
    Flow through a combined ventral and axial exhaust nozzle system was studied experimentally and analytically. The work is part of an ongoing propulsion technology effort at NASA Lewis Research Center for short takeoff, vertical landing (STOVL) aircraft. The experimental investigation was done on the NASA Lewis Powered Lift Facility. The experiment consisted of performance testing over a range of tailpipe pressure ratios from 1 to 3.2 and flow visualization. The analytical investigation consisted of modeling the same configuration and solving for the flow using the PARC3D computational fluid dynamics program. The comparison of experimental and analytical results was very good. The ventral nozzle performance coefficients obtained from both the experimental and analytical studies agreed within 1.2 percent. The net horizontal thrust of the nozzle system contained a significant reverse thrust component created by the flow overturning in the ventral duct. This component resulted in a low net horizontal thrust coefficient. The experimental and analytical studies showed very good agreement in the internal flow patterns

    A Monte Carlo study of the three-dimensional Coulomb frustrated Ising ferromagnet

    Full text link
    We have investigated by Monte-Carlo simulation the phase diagram of a three-dimensional Ising model with nearest-neighbor ferromagnetic interactions and small, but long-range (Coulombic) antiferromagnetic interactions. We have developed an efficient cluster algorithm and used different lattice sizes and geometries, which allows us to obtain the main characteristics of the temperature-frustration phase diagram. Our finite-size scaling analysis confirms that the melting of the lamellar phases into the paramgnetic phase is driven first-order by the fluctuations. Transitions between ordered phases with different modulation patterns is observed in some regions of the diagram, in agreement with a recent mean-field analysis.Comment: 14 pages, 10 figures, submitted to Phys. Rev.

    The structure of the ternary Eg5–ADP–ispinesib complex

    Get PDF
    The human kinesin Eg5 is responsible for bipolar spindle formation during early mitosis. Inhibition of Eg5 triggers the formation of monoastral spindles, leading to mitotic arrest that eventually causes apoptosis. There is increasing evidence that Eg5 constitutes a potential drug target for the development of cancer chemotherapeutics. The most advanced Eg5-targeting agent is ispinesib, which exhibits potent antitumour activity and is currently in multiple phase II clinical trials. In this study, the crystal structure of the Eg5 motor domain in complex with ispinesib, supported by kinetic and thermodynamic binding data, is reported. Ispinesib occupies the same induced-fit pocket in Eg5 as other allosteric inhibitors, making extensive hydrophobic interactions with the protein. The data for the Eg5-ADP-ispinesib complex suffered from pseudo-merohedral twinning and revealed translational noncrystallographic symmetry, leading to challenges in data processing, space-group assignment and structure solution as well as in refinement. These complications may explain the lack of available structural information for this important agent and its analogues. The present structure represents the best interpretation of these data based on extensive data-reduction, structure-solution and refinement trials

    Rocket-Based Combined Cycle Engine Technology Development: Inlet CFD Validation and Application

    Get PDF
    A CFD methodology has been developed for inlet analyses of Rocket-Based Combined Cycle (RBCC) Engines. A full Navier-Stokes analysis code, NPARC, was used in conjunction with pre- and post-processing tools to obtain a complete description of the flow field and integrated inlet performance. This methodology was developed and validated using results from a subscale test of the inlet to a RBCC 'Strut-Jet' engine performed in the NASA Lewis 1 x 1 ft. supersonic wind tunnel. Results obtained from this study include analyses at flight Mach numbers of 5 and 6 for super-critical operating conditions. These results showed excellent agreement with experimental data. The analysis tools were also used to obtain pre-test performance and operability predictions for the RBCC demonstrator engine planned for testing in the NASA Lewis Hypersonic Test Facility. This analysis calculated the baseline fuel-off internal force of the engine which is needed to determine the net thrust with fuel on

    Prime movers : mechanochemistry of mitotic kinesins

    Get PDF
    Mitotic spindles are self-organizing protein machines that harness teams of multiple force generators to drive chromosome segregation. Kinesins are key members of these force-generating teams. Different kinesins walk directionally along dynamic microtubules, anchor, crosslink, align and sort microtubules into polarized bundles, and influence microtubule dynamics by interacting with microtubule tips. The mechanochemical mechanisms of these kinesins are specialized to enable each type to make a specific contribution to spindle self-organization and chromosome segregation

    Flow Field of a Dual-Stream Jet with External Wedge- Shaped Deflector

    Get PDF
    The research effort is a Reynolds-Averaged Navier-Stokes (RANS) investigation that looks at the flow-field and performance of a bypass ratio 8 nozzle with an external wedgeshaped noise suppressor, simulating the exhaust of a turbofan engine at takeoff conditions. Peak turbulence was reduced by the wedge on the side opposite the deflector, and it was increased in the initial region of the jet behind the deflector. Flow-field trends agreed with the expectations based on static jet experiments. The calculated thrust loss was 1.1% at takeoff conditions

    Status of Turbulence Modeling for Hypersonic Propulsion Flowpaths

    Get PDF
    This report provides an assessment of current turbulent flow calculation methods for hypersonic propulsion flowpaths, particularly the scramjet engine. Emphasis is placed on Reynolds-averaged Navier-Stokes (RANS) methods, but some discussion of newer meth- ods such as Large Eddy Simulation (LES) is also provided. The report is organized by considering technical issues throughout the scramjet-powered vehicle flowpath including laminar-to-turbulent boundary layer transition, shock wave / turbulent boundary layer interactions, scalar transport modeling (specifically the significance of turbulent Prandtl and Schmidt numbers) and compressible mixing. Unit problems are primarily used to conduct the assessment. In the combustor, results from calculations of a direct connect supersonic combustion experiment are also used to address the effects of turbulence model selection and in particular settings for the turbulent Prandtl and Schmidt numbers. It is concluded that RANS turbulence modeling shortfalls are still a major limitation to the accuracy of hypersonic propulsion simulations, whether considering individual components or an overall system. Newer methods such as LES-based techniques may be promising, but are not yet at a maturity to be used routinely by the hypersonic propulsion community. The need for fundamental experiments to provide data for turbulence model development and validation is discussed

    Observation of charmless hadronic B decays

    Get PDF
    Four candidates for charmless hadronic B decay are observed in a data sample of four million hadronic Z decays recorded by the ALEPH detector at LEP. The probability that these events come from background sources is estimated to be less than 10(-6). The average branching of weakly decaying B hadrons (a mixture of B-d(0), B-s(0) and Lambda(b) weighted by their production The average branching ratio of weakly decaying B hadrons (a mixture of B-d(0) cross sections and lifetimes, here denoted B) into two long-lived charged hadrons (pions, kaons or protons) is measured to be Br(B-->h(+)h(-))=(1.7(-0.7)(+1.0)+/-0.2)x10(-5). The relative branching fraction Br(B-d(s)(0)-->pi(+)pi(-)(K-))/Br(B-d(s)(0)-->h(+)h(-)) is measured to be 1.0(-0.3-0.1)(+0.0+0.0). In addition, branching ratio upper limits are obtained for a variety of exclusive charmless hadronic two-body decays of B hadrons

    Four-fermion production in e+ee^+e^- collisions at centre-of-mass energies of 130 and 136 GeV

    Get PDF
    Four-fermion events have been selected in a data sample of 5.8 pb−1 collected with the aleph detector at centre-of-mass energies of 130 and 136 GeV. The final states , ℓ+ℓ−ℓ+ℓ−, , and have been examined. Five events are observed in the data, in agreement with the Standard Model predictions of 6.67±0.38 events from four-fermion processes and 0.14−0.05+0.19 from background processes

    Prospective validation of VEGF and eNOS polymorphisms as predictors of first-line bevacizumab efficacy in patients with metastatic colorectal cancer

    Get PDF
    Bevacizumab (Bev) plus chemotherapy is a standard first-line treatment in metastatic colorectal cancer (mCRC), however to date no predictive factors of response have been identified. Results of our previous analysis on patients enrolled in a randomized prospective phase III multicenter study (ITACa study) showed a predictive value of Vascular Endothelial Growth Factor (VEGF) polymorphism (VEGF + 936), a 27-nucleotide variable number tandem repeat (VNTR) of the endothelial nitric oxide synthase (eNOS) gene and eNOS + 894 polymorphism. mCRC patients, treated with Bev plus chemotherapy, were included in this prospective validation trial. eNOS + 894G > T was analyzed by Real time PCR, while the eNOS VNTR and VEGF + 936C > T were determined by standard PCR and direct sequencing analysis. These polymorphisms were assessed in relation to progression-free survival (PFS), overall survival (OS) and objective response rate (ORR). These three polymorphisms were not predictive of PFS (p 0.91, 0.59 and 0.09, respectively), and OS (p 0.95, 0.32 and 0.46, respectively). Moreover, the haplotype analyses did not confirm what was found in our previous study; patients bearing a specific haplotype of eNOS had not significantly improved outcomes. This prospective study failed to validate the predictive impact of eNOS and VEGF polymorphisms for response to Bev plus first-line chemotherapy in mCRC patients
    corecore