161 research outputs found
Guide for library design and bias correction for large-scale transcriptome studies using highly multiplexed RNAseq methods
Background Standard RNAseq methods using bulk RNA and recent single-cell RNAseq methods use DNA barcodes to identify samples and cells, and the barcoded cDNAs are pooled into a library pool before high throughput sequencing. In cases of single-cell and low-input RNAseq methods, the library is further amplified by PCR after the pooling. Preparation of hundreds or more samples for a large study often requires multiple library pools. However, sometimes correlation between expression profiles among the libraries is low and batch effect biases make integration of data between library pools difficult. Results We investigated 166 technical replicates in 14 RNAseq libraries made using the STRT method. The patterns of the library biases differed by genes, and uneven library yields were associated with library biases. The former bias was corrected using the NBGLM-LBC algorithm, which we present in the current study. The latter bias could not be corrected directly, but could be solved by omitting libraries with particularly low yields. A simulation experiment suggested that the library bias correction using NBGLM-LBC requires a consistent sample layout. The NBGLM-LBC correction method was applied to an expression profile for a cohort study of childhood acute respiratory illness, and the library biases were resolved. Conclusions The R source code for the library bias correction named NBGLM-LBC is available at and . This method is applicable to correct the library biases in various studies that use highly multiplexed sequencing-based profiling methods with a consistent sample layout with samples to be compared (e.g., "cases" and "controls") equally distributed in each library.Peer reviewe
Effects of inhaled corticosteroids on DNA methylation in peripheral blood cells in children with asthma
Non peer reviewe
Neuropeptide S (NPS) variants modify the signaling and risk effects of NPS Receptor 1 (NPSR1) variants in asthma
Single nucleotide polymorphisms (SNPs) close to the gain-of-function substitution, Asn(107) Ile (rs324981, A>T), in Neuropeptide S Receptor 1 (NPSR1) have been associated with asthma. Furthermore, a functional SNP (rs4751440, G>C) in Neuropeptide S (NPS) encodes a Val(6)Leu substitution on the mature peptide that results in reduced bioactivity. We sought to examine the effects of different combinations of these NPS and NPSR1 variants on downstream signaling and genetic risk of asthma. In transfected cells, the magnitude of NPSR1-induced activation of cAMP/PKA signal transduction pathways and downstream gene expression was dependent on the combination of the NPS and NPSR1 variants with NPS-Val(6)/NPSR1-Ile(107) resulting in strongest and NPS-Leu(6)/NPSR1-Asn(107) in weakest effects, respectively. One or two copies of the NPS-Leu(6) (rs4751440) were associated with physician-diagnosed childhood asthma (OR: 0.67, 95% CI 0.49-0.92, p = 0.01) and together with two other linked NPS variants (rs1931704 and rs10830123) formed a protective haplotype (p = 0.008) in the Swedish birth cohort BAMSE (2033 children). NPS rs10830123 showed epistasis with NPSR1 rs324981 encoding Asn(107)Ile (p = 0.009) in BAMSE and with the linked NPSR1 rs17199659 (p = 0.005) in the German MAGIC/ISAAC II cohort (1454 children). In conclusion, NPS variants modify asthma risk and should be considered in genetic association studies of NPSR1 with asthma and other complex diseases.Peer reviewe
Infant tidal flow–volume parameters and arousal state
This version is distributed under the terms of the Creative Commons Attribution NonCommercial Licence 4.0. For commercial reproduction rights and permissions contact: [email protected]: Infant lung function can be assessed with tidal flow–volume (TFV) loops. While TFV loops can be measured in both awake and sleeping infants, the influence of arousal state in early infancy is not established. The aim of the present study was to determine whether TFV loop parameters in healthy infants differed while awake compared to the sleeping state at 3 months of age.
Methods: From the population-based Scandinavian Preventing Atopic Dermatitis and ALLergies in children (PreventADALL) birth cohort, 91 infants had reproducible TFV loops measured with Exhalyzer® D in both the awake and sleeping state at 3 months of age. The TFV loops were manually selected according to a standardised procedure. The ratio of time to peak tidal expiratory flow (tPTEF) to expiratory time (tE) and the corresponding volume ratio (VPTEF/VE), as well as tidal volume (VT) and respiratory rate were compared using nonparametric tests.
Results: The mean (95% CI) tPTEF/tE was significantly higher while awake compared to the sleeping state: 0.39 (0.37–0.41) versus 0.28 (0.27–0.29); with the corresponding VPTEF/VE of 0.38 (0.36–0.40) versus 0.29 (0.28–0.30). The VT was similar, while the respiratory rate was higher while awake compared to the sleeping state: 53 (51–56) breaths·min−1 versus 38 (36–40) breaths·min−1 .
Conclusion: Higher tPTEF/tE, VPTEF/VE and respiratory rate, but similar VT while awake compared to the sleeping state suggests that separate normative TFV loop values according to arousal state may be required in early infancy.publishedVersio
Infant colic and abdominal pain; associations with infant multimorbidity and maternal perceived stress up to 3 months postpartum—A cross-sectional/cohort study in the PreventADALL study
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.Aims and Objectives: The primary aim was to explore whether infants with pain symptoms (colic, abdominal pain and visit to healthcare provider with pain or other discomforts) had increased multimorbidity (common infections, eczema and food sensitivity) compared with infants without these conditions. Secondarily, we aimed to determine whether infant pain symptoms were associated with maternal perceived stress in pregnancy and 3 months postpartum.
Background: Infant colic and abdominal pain are common concerns in early infancy. Nevertheless, to our knowledge, little research exists on the relationship between infant pain and common infant infections, eczema and food sensitization as comorbidities, and the impact of infant pain on the development of maternal perceived stress from pregnancy to infancy is inconsistent.
Design: This study was cross-sectional and partly prospective.
Methods: The sample consisted of mother–infant pairs (N = 1852); information regarding infant pain and multimorbidity was collected from the 3-month questionnaire and postpartum visits in the PreventADALL prospective cohort study. Chi-square tests and regression analyses were conducted. The STROBE checklist was followed.
Results: Our results showed a statistically significant higher proportion of respiratory and other infections in infants with pain symptoms. The odds of infant pain were higher for infants with multimorbidity compared to those with no comorbidity. Mothers of infants with colic and of infants visiting healthcare with pain and other discomforts reported statistically significant higher perceived stress by 3 months compared with mothers of infants with no reported pain.
Conclusion: Our results indicate an association between infant pain symptoms and the presence of infections. Mothers of infants with colic and visiting healthcare had higher perceived stress compared to the no pain group.
Implications for Practice: Our study indicates that infant pain is associated with infant multimorbidity and maternal perceived stress, which may be useful when planning diagnostic, treatment and coping strategies in infant and family care.
Patient or Public Contribution: The PreventADALL is a collaborative study with governmental and patient organisation representation. Selected infants with parents were also contributing during calibrating courses on eczema assessment for the data collectors.
Trial Registration: The study was approved by the Regional Committee in Norway (2014/518) and Sweden (2014/2242–31/4) and registered at clinicaltrial.gov (NCT02449850). Link for clinical trials: https://clinicaltrials.gov/ct2/show/NCT02449850publishedVersio
DNA Methylation Levels in Mononuclear Leukocytes from the Mother and Her Child Are Associated with IgE Sensitization to Allergens in Early Life
DNA methylation changes may predispose becoming IgE-sensitized to allergens. We analyzed whether DNA methylation in peripheral blood mononuclear cells (PBMC) is associated with IgE sensitization at 5 years of age (5Y). DNA methylation was measured in 288 PBMC samples from 74 mother/child pairs from the birth cohort ALADDIN (Assessment of Lifestyle and Allergic Disease During INfancy) using the HumanMethylation450BeadChip (Illumina). PBMCs were obtained from the mothers during pregnancy and from their children in cord blood, at 2 years and 5Y. DNA methylation levels at each time point were compared between children with and without IgE sensitization to allergens at 5Y. For replication, CpG sites associated with IgE sensitization in ALADDIN were evaluated in whole blood DNA of 256 children, 4 years old, from the BAMSE (Swedish abbreviation for Children, Allergy, Milieu, Stockholm, Epidemiology) cohort. We found 34 differentially methylated regions (DMRs) associated with IgE sensitization to airborne allergens and 38 DMRs associated with sensitization to food allergens in children at 5Y (Sidak p ≤ 0.05). Genes associated with airborne sensitization were enriched in the pathway of endocytosis, while genes associated with food sensitization were enriched in focal adhesion, the bacterial invasion of epithelial cells, and leukocyte migration. Furthermore, 25 DMRs in maternal PBMCs were associated with IgE sensitization to airborne allergens in their children at 5Y, which were functionally annotated to the mTOR (mammalian Target of Rapamycin) signaling pathway. This study supports that DNA methylation is associated with IgE sensitization early in life and revealed new candidate genes for atopy. Moreover, our study provides evidence that maternal DNA methylation levels are associated with IgE sensitization in the child supporting early in utero effects on atopy predisposition.</p
- …