11 research outputs found

    Mechanisms of MPER helix binding at membrane interfaces and implications for the broad neutralization of HIV by antibodies

    Get PDF
    221 p.En esta tesis se lleva a cabo un estudio detallado de la función que desempeña el lazo CDR-H3 de losanticuerpos anti MPER 4E10 y 10E8 en al unión y neutralización del VIH así como la contribución de launión directa a lípidos en el mecanismo de neutralización del anticuerpo 4E10. Para ello se ha puesto apunto la expresión de Fabs recombinantes en E. coli. La expresión en bacterias facilita la manipulacióngenética de estos especímenes para su uso en cristalografía y diferentes ensayos biofísicos donde serequiren altas concentraciones de material y marcajes con amino ácidos no-naturales o moléculasfluorescentes. Los datos obtenidos en esta tesis aportan información relevante para el diseño racional devacunas anti-MPER capaces de generar anticuerpos con características similares al 4E10 y el 10E8.CSIC, Instituto Biofisika Institutu

    Mechanisms of MPER helix binding at membrane interfaces and implications for the broad neutralization of HIV by antibodies

    Get PDF
    221 p.En esta tesis se lleva a cabo un estudio detallado de la función que desempeña el lazo CDR-H3 de losanticuerpos anti MPER 4E10 y 10E8 en al unión y neutralización del VIH así como la contribución de launión directa a lípidos en el mecanismo de neutralización del anticuerpo 4E10. Para ello se ha puesto apunto la expresión de Fabs recombinantes en E. coli. La expresión en bacterias facilita la manipulacióngenética de estos especímenes para su uso en cristalografía y diferentes ensayos biofísicos donde serequiren altas concentraciones de material y marcajes con amino ácidos no-naturales o moléculasfluorescentes. Los datos obtenidos en esta tesis aportan información relevante para el diseño racional devacunas anti-MPER capaces de generar anticuerpos con características similares al 4E10 y el 10E8.CSIC, Instituto Biofisika Institutu

    Structural Characterization of the ICOS/ICOS-L Immune Complex Reveals High Molecular Mimicry by Therapeutic Antibodies

    Get PDF
    The inducible co-stimulator (ICOS) is a member of the CD28/B7 superfamily, and delivers a positive co-stimulatory signal to activated T cells upon binding to its ligand (ICOS-L). Dysregulation of this pathway has been implicated in autoimmune diseases and cancer, and is currently under clinical investigation as an immune checkpoint blockade. Here, we describe the molecular interactions of the ICOS/ICOS-L immune complex at 3.3 Ao resolution. A central FDPPPF motif and residues within the CC' loop of ICOS are responsible for the specificity of the interaction with ICOS-L, with a distinct receptor binding orientation in comparison to other family members. Furthermore, our structure and binding data reveal that the ICOS N110 N-linked glycan participates in ICOS-L binding. In addition, we report crystal structures of ICOS and ICOS-L in complex with monoclonal antibodies under clinical evaluation in immunotherapy. Strikingly, antibody paratopes closely mimic receptor-ligand binding core interactions, in addition to contacting peripheral residues to confer high binding affinities. Our results uncover key molecular interactions of an immune complex central to human adaptive immunity and have direct implications for the ongoing development of therapeutic interventions targeting immune checkpoint receptors. The inducible co-stimulator (ICOS) is a member of the CD28/B7 superfamily, binding its ligand (ICOS-L) on activated T cells. The structure of the ICOS/ICOS-L complex reveals a distinct receptor binding orientation. The structures of ICOS and ICOS-L in complex with potentially therapeutic antibodies suggest the structural basis of such antibodies' efficacies and high binding affinities.This work was supported by the European Union's Horizon 2020 research and innovation program under Marie Sklodowska-Curie grant 790012 (E.R.), by operating grant PJT-148811 from the Canadian Institutes of Health Research (J.P.J.), the CIFAR Azrieli Global Scholar program (J.P.J.), the Ontario Early Researcher Awards program (J.P.J.), and the Canada Research Chairs program (J.P.J.). T.S. is a recipient of a Vanier Canada Graduate Scholarship. The BLI instrument was accessed at the Structural & Biophysical Core Facility, The Hospital for Sick Children, supported by the Canada Foundation for Innovation and Ontario Research Fund. X-ray diffraction experiments were performed at GM/CA@APS, which has been funded in whole or in part with federal funds from the National Cancer Institute (ACB-12002) and the National Institute of General Medical Sciences (AGM -12006). The Eiger 16M detector at GM/CA-XSD was funded by NIH grant S10 OD012289. This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science user facility operated for the DOE Office of Science by Argonne National Laboratory under contract DE-ACO2-06CH11357. X-ray diffraction experiments were also performed at the NSLS-II, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by BNL under Contract No. DE -5C0012704. The Life Science Biomedical Technology Research resource is primarily supported by the National Institute of Health, National Institute of General Medical Sciences (NIGMS) through a Biomedical Technology Research Resource P41 grant (P41GM111244), and by the DOE Office of Biological and Environmental Research (KP1605010)

    Molecular Recognition of the Native HIV-1 MPER Revealed by STED Microscopy of Single Virions

    Get PDF
    Antibodies against the Membrane-Proximal External Region (MPER) of the Env gp41 subunit neutralize HIV-1 with exceptional breadth and potency. Due to the lack of knowledge on the MPER native structure and accessibility, different and exclusive models have been proposed for the molecular mechanism of MPER recognition by broadly neutralizing antibodies. Here, accessibility of antibodies to the native Env MPER on single virions has been addressed through STED microscopy. STED imaging of fluorescently labeled Fabs reveals a common pattern of native Env recognition for HIV-1 antibodies targeting MPER or the surface subunit gp120. In the case of anti-MPER antibodies, the process evolves with extra contribution of interactions with the viral lipid membrane to binding specificity. Our data provide biophysical insights into the recognition of the potent and broadly neutralizing MPER epitope on HIV virions, and as such is of importance for the design of therapeutic interventions.This study was supported by the Spanish MINECO (BIO2015-64421-R (MINECO/ FEDER UE) to J.L.N.) and the Basque Government (IT838-13 to J.L.N.). P.C., E.R., and S. I. received pre-doctoral fellowships from the Basque Government. P.C. would like to acknowledge the European Biophysical Societies’ Association (EBSA) for receiving an EBSA Bursary for a working visit to a laboratory in an EBSA country. J.C., D.W., and C. E. greatly acknowledge support by the MRC (grant number MC_UU_12010/unit programs G0902418 and MC_UU_12025), the Wellcome Trust (grant 104924/14/Z/14 and Strategic Award 091911 (Micron)), MRC/BBSRC/EPSRC (grant MR/K01577X/1), BBSRC (Deutsche Forschungsgemeinschaft (Research unit 1905 “Structure and function of the peroxisomal translocon”)), the Wolfson Foundation (for initial funding of the Wolfson Imaging Centre Oxford), the EPA Cephalosporin Fund and the John Fell Fund. T.S. is a recipient of a Canada Graduate Scholarship Master’s Award and a Vanier Canada Graduate Scholarship from the Canadian Institutes of Health Research. This work was supported by operating grant NIH-150414 (J.-P.J.) from the Canadian Institutes of Health Research. This research was undertaken, in part, thanks to funding from the Canada Research Chairs program (J.-P.J.). We acknowledge valuable technical assistance from Miguel García-Porra

    Engineering pan–HIV-1 neutralization potency through multispecific antibody avidity

    Get PDF
    Deep mining of B cell repertoires of HIV-1-infected individuals has resulted in the isolation of dozens of HIV-1 broadly neutralizing antibodies (bNAbs). Yet, it remains uncertain whether any such bNAbs alone are sufficiently broad and potent to deploy therapeutically. Here, we engineered HIV-1 bNAbs for their combination on a single multispecific and avid molecule via direct genetic fusion of their Fab fragments to the human apoferritin light chain. The resulting molecule demonstrated a remarkable median IC50 value of 0.0009 g/mL and 100% neutralization coverage of a broad HIV-1 pseudovirus panel (118 isolates) at a 4 g/mL cutoff-a 32-fold enhancement in viral neutralization potency compared to a mixture of the corresponding HIV-1 bNAbs. Importantly, Fc incorporation on the molecule and engineering to modulate Fc receptor binding resulted in IgG-like bioavailability invivo. This robust plug-and-play antibody design is relevant against indications where multispecificity and avidity are leveraged simultaneously to mediate optimal biological activity.The following reagents were obtained through the NIH AIDS Reagent Program, Division of AIDS, National Institute of Allergy and Infectious Diseases: TZM-bl cells (ARP-8129; contributed by Dr. John C. Kappes and Dr. Xiaoyun Wu); anti–HIV-1 gp160 monoclonal antibody (N6/ PGDM1400x10E8v4) (ARP-13390; contributed by Drs. Ling Xu and Gary Nabel); HIV-1 NL4-3 ΔEnv Vpr luciferase reporter vector (pNL4-3.Luc.R-E-) (ARP-3418; contributed by Dr. Nathaniel Landau and Aaron Diamond); plasmids pcDNA3.1 D/V5-His TOPO-expressing HIV-1 Env/Rev (ARP-11017, ARP-11018, ARP-11024, and ARP-11022; contributed by Drs. David Montefiori, Feng Gao, and Ming Li); plasmid pcDNA3.1(+)-expressing HIV-1 Env/Rev (ARP-11037; contributed by Drs. B. H. Hahn and D. L. Kothe); plasmid pcDNA3.1 D/V5-His TOPO-expressing HIV-1 Env/Rev (ARP-11308; contributed by Drs. D. Montefiori, F. Gao, C. Wil- liamson, and S. Abdool Karim); plasmid pcDNA3.1 V5-His TOPO-expressing HIV-1 Env/Rev (ARP-11309; contributed by Drs. B. H. Hahn, Y. Li, and J. F. Sala- zar-Gonzalez); HIV-1 BG505 Env expression vector (BG505.W6M.ENV.C2) (ARP- 11518; contributed by Dr. Julie Overbaugh); HIV-1 Env expression vector (CRF02_AG clone 257) (ARP-11599; contributed by Drs. D. Ellenberger, B. Li, M. Callahan, and S. Butera); plasmid pcDNA3.1 V5-His TOPO-expressing HIV-1 CNE8 Env (ARP-12653; contributed by Drs. Linqi Zhang, Hong Shang, David Montefiori, Tsinghua University (Beijing, China), China Medical University (Bei- jing, China), and Duke University (Durham, NC); HIV-1 SF162 gp160 expression vector (ARP-10463; contributed by Drs. Leonidas Stamatatos and Cecilia Cheng- Mayer); plasmid pcDNA3.1 V5-His TOPO-expressing HIV-1 Env/Rev (ARP-11034; contributed by Drs. B. H. Hahn, X. Wei, and G. M. Shaw); plasmid pcDNA3.1/V5- His TOPO-expressing HIV Env/Rev (ARP-11038; contributed by Drs. B. H. Hahn and D. L. Kothe); plasmid pcDNA3.1 V5-His TOPO-expressing HIV-1 Env/Rev (ARP-11310; contributed by Drs. B. H. Hahn, Y. Li, and J. F. Salazar-Gonzalez); HIV-1 Env expression vector (p16845 env) (ARP-11503; contributed by Drs. R. Paranjape, S. Kulkarni, and D. Montefiori); HIV-1 1054 Env expression vector (p1054.TC4.1499) (ARP-11561) and 6244 Env expression vector (p6244_13.B5.4576) (ARP-11566; contributed by Drs. Beatrice H. Hahn, Brandon F. Keele, and George M. Shaw); HIV-1 ZM246F Env expression vector (pZM246F_C1G) (ARP-11830; contributed by Dr. Beatrice Hahn); HIV-1 Env expression vector (CRF02_AG clone 278) (ARP-11605; contributed by Drs. Michael Thomson, Ana Revilla, Elena Delgado, David Montefiori, Sonia P erez Castro, Centro Nacional de Microbiologia, Instituto de Salud Carlos III (Majada- honda, Madrid, Spain), Complejo Hospitalario Santa Mar ıa Madre (Orense, Spain), Duke University (Durham, NC), and the CAVD; and NL4-3 Env expression vector (pDOLHIVenv) (from Dr. Eric Freed and Dr. Rex Risser). The following reagents were kindly provided by CAVD: X2988, ZM106.9, and 3817. We thank S. Tabruyn and F. Arbogast for their assistance with in vivo studies. We thank the SickKids-University Health Network Flow Cytometry Facility. This work wassupported by Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant 6280100058 (J.-P.J.) and by Operating Grant PJ4- 169662 from the Canadian Institutes of Health Research (CIHR; B.T. and J.-P.J.). This research was also supported by the European Union’s Horizon 2020 research and innovation program under Marie Sklodowska-Curie Grant 790012 (E.R.), a Hospital for Sick Children Restracomp Postdoctoral Fellowship (C.B.A.), an NSERC postgraduate doctoral scholarship (T.Z.), a predoctoral fel- lowship from the Basque Government (PRE_2019_2_0046) (S.I.), the Canadian Institute for Advanced Research (CIFAR) Azrieli Global Scholar program (J.-P.J.), the Ontario Early Researcher Awards program (J.-P.J.), and the CanadaResearch Chairs program (B.T. and J.-P.J.). This work was supported, in part, by NSERC Discovery Grant RGPIN-2019-06442 and CIHR Project Grant–Priority Announcement PJH-175379 to C.G., and a CIHR Canada Graduate Scholarship (CGS-M) to J.B. Further support was obtained from the Spanish Ministry of Sci- ence, Innovation and Universities (MCIU) with the support of the Spanish Research Agency/The European Regional Development Fund (AEI/FEDER) (RTI2018-095624-B-C21) (J.L.N.) and the Basque Government (IT1196-19) (J.L.N.). Biophysical data were collected at the Structural & Biophysical Core facility supported by the Canada Foundation for Innovation and Ontario Research Fun

    Functional Delineation of a Protein–Membrane Interaction Hotspot Site on the HIV-1 Neutralizing Antibody 10E8

    Get PDF
    Antibody engagement with the membrane-proximal external region (MPER) of the envelope glycoprotein (Env) of HIV-1 constitutes a distinctive molecular recognition phenomenon, the full appreciation of which is crucial for understanding the mechanisms that underlie the broad neutralization of the virus. Recognition of the HIV-1 Env antigen seems to depend on two specific features developed by antibodies with MPER specificity: (i) a large cavity at the antigen-binding site that holds the epitope amphipathic helix; and (ii) a membrane-accommodating Fab surface that engages with viral phospholipids. Thus, besides the main Fab–peptide interaction, molecular recognition of MPER depends on semi-specific (electrostatic and hydrophobic) interactions with membranes and, reportedly, on specific binding to the phospholipid head groups. Here, based on available cryo-EM structures of Fab–Env complexes of the anti-MPER antibody 10E8, we sought to delineate the functional antibody–membrane interface using as the defining criterion the neutralization potency and binding affinity improvements induced by Arg substitutions. This rational, Arg-based mutagenesis strategy revealed the position-dependent contribution of electrostatic interactions upon inclusion of Arg-s at the CDR1, CDR2 or FR3 of the Fab light chain. Moreover, the contribution of the most effective Arg-s increased the potency enhancement induced by inclusion of a hydrophobic-at-interface Phe at position 100c of the heavy chain CDR3. In combination, the potency and affinity improvements by Arg residues delineated a protein–membrane interaction site, whose surface and position support a possible mechanism of action for 10E8-induced neutralization. Functional delineation of membrane-interacting patches could open new lines of research to optimize antibodies of therapeutic interest that target integral membrane epitopes.This study was supported by the Spanish MCIN (Grants PID2021-126014OB-I00 MCIN/AEI/FEDER, UE to JLN and BA; and PID2021-122212OA-I00 MCIN/AEI/FEDER, UE to ER), Basque Government (Grant: IT1449-22) and JSPS KAKENHI 20H03228 (to J.M.M.C.)

    Molecular recognition of a membrane-anchored HIV-1 pan-neutralizing epitope.

    Get PDF
    Antibodies against the carboxy-terminal section of the membrane-proximal external region (C-MPER) of the HIV-1 envelope glycoprotein (Env) are considered as nearly pan-neutralizing. Development of vaccines capable of producing analogous broadly neutralizing antibodies requires deep understanding of the mechanism that underlies C-MPER recognition in membranes. Here, we use the archetypic 10E8 antibody and a variety of biophysical techniques including single-molecule approaches to study the molecular recognition of C-MPER in membrane mimetics. In contrast to the assumption that an interfacial MPER helix embodies the entire C-MPER epitope recognized by 10E8, our data indicate that transmembrane domain (TMD) residues contribute to binding affinity and specificity. Moreover, anchoring to membrane the helical C-MPER epitope through the TMD augments antibody binding affinity and relieves the effects exerted by the interfacial MPER helix on the mechanical stability of the lipid bilayer. These observations support that addition of TMD residues may result in more efficient and stable anti-MPER vaccines.This study was supported by MCIN/AEI/10.13039/501100011033 - “ERDF A way of making Europe” (Grant PID2021-126014OB-I00 to J.L.N. and B.A.), MCIN/AEI/10.13039/501100011033 (Grant PID2020-112821GB-I00 to M.A.J.), Basque Government (Grant: IT1449-22 to J.L.N. and B.A.) and Kiban-B grant 20H03228 from JSPS to J.M.M.C. L.R.-M. acknowledges funding from the Agence National de la Recherche (ANR), as part of the ‘Investments d′Avenir’ Program (I-SITE ULNE/ANR-16-IDEX-0004 ULNE). This project has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No. 895819 (to C.V.). Work at Pompeu Fabra University was supported by the María de Maeztu network of Units of Excellence of the Spanish Ministry of Science and Innovation. Technical assistance from Miguel García-Porras is greatly acknowledged. The NMR experiments were performed in the “Manuel Rico” NMR laboratory, LMR, CSIC, a node of the Spanish Large-Scale National Facility ICTS R-LRB

    Focal accumulation of aromaticity at the CDRH3 loop mitigates 4E10 polyreactivity without altering its HIV neutralization profile

    Get PDF
    Broadly neutralizing antibodies (bnAbs) against HIV-1 are frequently associated with the presence of autoreactivity/polyreactivity, a property that can limit their use as therapeutic agents. The bnAb 4E10, targeting the conserved Membrane proximal external region (MPER) of HIV-1, displays almost pan-neutralizing activity across globally circulating HIV-1 strains but exhibits nonspecific off-target interactions with lipid membranes. The hydrophobic apex of the third complementarity-determining region of the heavy chain (CDRH3) loop, which is essential for viral neutralization, critically contributes to this detrimental effect. Here, we have replaced the aromatic/hydrophobic residues from the apex of the CDRH3 of 4E10 with a single aromatic molecule through chemical modification to generate a variant that preserves the neutralization potency and breadth of 4E10 but with reduced autoreactivity. Collectively, our study suggests that the localized accumulation of aromaticity by chemical modification provides a pathway to ameliorate the adverse effects triggered by the CDRH3 of anti-HIV-1 MPER bnAbs.This study was supported by the following Grants: European Commission (790012 SI H2020-MSCA-IF-2017) (E.R.); US NIAID, NIH grant R01 AI143563 (M.B. Z.); James B. Pendleton Charitable Trust (M.B.Z.); JSPS grant 20H03228 (J. M.M.C.); Spanish MCIU (RTI2018-095624-B-C21; MCIU/AEI/FEDER, UE) (J.L.N.), Basque Government (IT1196-19) (J.L.N.). C.E. acknowledges funding from Medical Research Council (grant number MC_UU_12010/unit programs G0902418 and MC_UU_12025), Wolfson Foundation, Deutsche Forschungsgemeinschaft (Excellence Cluster Balance of the Microverse, Collaborative Research Center 1278 Polytarget), Leibniz Association (Leibniz Campus Infectooptics), Wellcome Institutional Strategic Support Fund, Oxford internal funds (EPA Cephalosporin Fund and John Fell Fund), and support from the Micron Oxford Advanced Bioimaging Unit (Wellcome Trust funding 107457/Z/15/Z). This work was also supported by the Platform Project for Supporting Drug Discovery and Life Science Research [Basis for Supporting Innovative Drug Discovery and Life Science Research (BINDS)] from AMED (JP21am0101091). S.I. received a predoctoral fellowship from the BasqueGovernment. P.C. would like to acknowledge the University of the Basque Country (DOCREC18/01), the Basque Government (POS_2018_1_0066) and the European Commission (H2020-MSCA-IF-2019-ST project 892232 FILM-HIV) for funding his position. This research was also supported by the CIFAR Azrieli Global Scholar program (J-P.J.), the Ontario Early Researcher Awards program (J-P.J.), and the Canada Research Chairs program (J-P.J.). Part of the biophysical data presented in this manuscript were collected at the Hospital for Sick Children Structural & Biophysical Core facility supported by the Canada Foundation for Innovation and Ontario Research Fund

    Affinity for the Interface Underpins Potency of Antibodies Operating In Membrane Environments

    Get PDF
    The contribution of membrane interfacial interactions to recognition of membrane-embedded antigens by antibodies is currently unclear. This report demonstrates the optimization of this type of antibodies via chemical modification of regions near the membrane but not directly involved in the recognition of the epitope. Using the HIV-1 antibody 10E8 as a model, linear and polycyclic synthetic aromatic compounds are introduced at selected sites. Molecular dynamics simulations predict the favorable interactions of these synthetic compounds with the viral lipid membrane, where the epitope of the HIV-1 glycoprotein Env is located. Chemical modification of 10E8 with aromatic acetamides facilitates the productive and specific recognition of the native antigen, partially buried in the crowded environment of the viral membrane, resulting in a dramatic increase of its capacity to block viral infection. These observations support the harnessing of interfacial affinity through site-selective chemical modification to optimize the function of antibodies that target membrane-proximal epitopes.We are grateful to Professor Ueda (Kyushu University) for valuable advice. C.D. acknowledges RES (Red Espanola de Supercomputacio ' n) for providing computational resources. S.I. received a pre-doctoral fellowship from the Basque Government. P.C. acknowledges a research associate contract from the University of the Basque Country (DOCREC18/01) and a postdoctoral fellowship from the Basque Government (POS_2018_1_0066).This study was supported by the following grants: European Commission (790012 SI H2020MSCA-IF-2017 to E.R., J.-P.J., and J.L.N.); US NIAID (NIH) (R01 AI143563 to M.B.Z.); James B. Pendleton Charitable Trust (to M.B.Z.); Grant-in-Aid for Scientific Research on Innovative Areas "Chemistry for Multimolecular Crowding Biosystems, JSPS KAKENHI (JP17H06349 to A.O.); JSPS KAKENHI (15K06962 and 20H03228 to J.M.M.C.); Spanish MINECO (BIO2015-64421R and MINECO/AEI/FEDER, UE to J.L.N.); Spanish MCIU (RTI2018-095624B-C21 and MCIU/AEI/FEDER, UE to J.L.N.); and the Basque Government (IT1196-19) (to J.L.N.). C.E. acknowledges funding from Medical Research Council (MC_UU_12010/unit programs G0902418 and MC_UU_12025), Wolfson Foundation, Deutsche Forschungsgemeinschaft (Research unit 1905, Excellence Cluster Balance of the Microverse, Collaborative Research Centre 1278 Polytarget), Wellcome Institutional Strategic Support Fund, Oxford internal funds (EPA Cephalosporin Fund and John Fell Fund), and support from the Micron Oxford Advanced Bioimaging Unit (Wellcome Trust funding 107457/Z/15/Z). This research was undertaken, in part, thanks to funding from the CIFAR Azrieli Global Scholar program (to J.-P.J.) and the Canada Research Chairs program (950-231604 to J.-P.J.). This work was also supported by the Platform Project for Supporting Drug Discovery and Life Science Research (Basis for Supporting Innovative Drug Discovery and Life Science Research [BINDS] from AMED JP19am0101091)

    Mechanisms of MPER helix binding at membrane interfaces and implications for the broad neutralization of HIV by antibodies

    No full text
    221 p.En esta tesis se lleva a cabo un estudio detallado de la función que desempeña el lazo CDR-H3 de losanticuerpos anti MPER 4E10 y 10E8 en al unión y neutralización del VIH así como la contribución de launión directa a lípidos en el mecanismo de neutralización del anticuerpo 4E10. Para ello se ha puesto apunto la expresión de Fabs recombinantes en E. coli. La expresión en bacterias facilita la manipulacióngenética de estos especímenes para su uso en cristalografía y diferentes ensayos biofísicos donde serequiren altas concentraciones de material y marcajes con amino ácidos no-naturales o moléculasfluorescentes. Los datos obtenidos en esta tesis aportan información relevante para el diseño racional devacunas anti-MPER capaces de generar anticuerpos con características similares al 4E10 y el 10E8.CSIC, Instituto Biofisika Institutu
    corecore