1,040 research outputs found

    ISS Remote User Payload Operations Training and Support

    Get PDF
    For more than ten years hundreds of payloads have been, and are currently being, successfully operated onboard the ISS. These payloads are operated by a diverse set of users all over the world. Due to the current international economic environment payload operations are being streamlined, in more and more cases, by using the payload investigators and scientists to also fill the role of operators. Taking this into consideration, increasingly, we have payload operators that are new to space operations and practices, therefore ground systems training and support have become a more critical aspect in ensuring a successful payload mission. The ISS ground systems payload interface is the Payload Operations and Integration Center (POIC), located at Marshall Space Flight Center. ISS ground systems training for all remote ISS payload operators, as well as the ISS POIC CADRE, are centralized at this facility. The POIC is the starting point for a remote payload operator to learn how to integrate, and operate their payload, successfully onboard the ISS. Additionally, the CADRE that supports the payload user community are trained and operate from this facility. This paper will give an overview of the ISS ground systems at the POIC, as it relates to the payload user/operator and CADRE community. The entire training process from initial contact with the POIC to in-flight operations will be reviewed and improvements to this process will be presented. More importantly we will present current training methods and proposed methodology whereby the user community will be trained more efficiently and thoroughly. Also, we will discuss how we can more effectively support users in their operations concept to programmatically conduct certain aspects of payload operations to reduce costs

    Vorposten Nahost:: Franz von Papen als deutscher Türkeibotschafter 1939-1944

    Get PDF

    Der klinische Fall

    Get PDF

    Surface Explosion Chemistry of Malic Acid on Cu(110)

    Get PDF
    The thermal decomposition chemistry of malic acid adsorbed on a copper(110) surface was studied with thermal desorption spectroscopy, reflection-absorption infrared spectroscopy, low-energy electron diffraction and X-ray photoelectron spectroscopy in ultrahigh vacuum. In contrast to tartaric acid on Cu(110), no differences between racemate and pure enantiomers have been identifie

    Approximating the least hypervolume contributor: NP-hard in general, but fast in practice

    Get PDF
    The hypervolume indicator is an increasingly popular set measure to compare the quality of two Pareto sets. The basic ingredient of most hypervolume indicator based optimization algorithms is the calculation of the hypervolume contribution of single solutions regarding a Pareto set. We show that exact calculation of the hypervolume contribution is #P-hard while its approximation is NP-hard. The same holds for the calculation of the minimal contribution. We also prove that it is NP-hard to decide whether a solution has the least hypervolume contribution. Even deciding whether the contribution of a solution is at most (1+\eps) times the minimal contribution is NP-hard. This implies that it is neither possible to efficiently find the least contributing solution (unless P=NPP = NP) nor to approximate it (unless NP=BPPNP = BPP). Nevertheless, in the second part of the paper we present a fast approximation algorithm for this problem. We prove that for arbitrarily given \eps,\delta>0 it calculates a solution with contribution at most (1+\eps) times the minimal contribution with probability at least (1−δ)(1-\delta). Though it cannot run in polynomial time for all instances, it performs extremely fast on various benchmark datasets. The algorithm solves very large problem instances which are intractable for exact algorithms (e.g., 10000 solutions in 100 dimensions) within a few seconds.Comment: 22 pages, to appear in Theoretical Computer Scienc

    Space Mission Operations Ground Systems Integration Customer Service

    Get PDF
    The facility, which is now the Huntsville Operations Support Center (HOSC) at Marshall Space Flight Center in Huntsville, AL, has provided continuous space mission and related services for the space industry since 1961, from Mercury Redstone through the International Space Station (ISS). Throughout the long history of the facility and mission support teams, the HOSC has developed a stellar customer support and service process. In this era, of cost cutting, and providing more capability and results with fewer resources, space missions are looking for the most efficient way to accomplish their objectives. One of the first services provided by the facility was fax transmission of documents to, then, Cape Canaveral in Florida. The headline in the Marshall Star, the newspaper for the newly formed Marshall Space Flight Center, read "Exact copies of Documents sent to Cape in 4 minutes." The customer was Dr. Wernher von Braun. Currently at the HOSC we are supporting, or have recently supported, missions ranging from simple ISS payloads requiring little more than "bentpipe" telemetry access, to a low cost free-flyer Fast, Affordable, Science and Technology Satellite (FASTSAT), to a full service ISS payload Alpha Magnetic Spectrometer 2 (AMS2) supporting 24/7 operations at three operations centers around the world with an investment of over 2 billion dollars. The HOSC has more need and desire than ever to provide fast and efficient customer service to support these missions. Here we will outline how our customer-centric service approach reduces the cost of providing services, makes it faster and easier than ever for new customers to get started with HOSC services, and show what the future holds for our space mission operations customers. We will discuss our philosophy concerning our responsibility and accessibility to a mission customer as well as how we deal with the following issues: initial contact with a customer, reducing customer cost, changing regulations and security, and cultural differences, to ensure an efficient response to customer issues using a small Customer Service Team (CST) and adaptability, constant communication with customers, technical expertise and knowledge of services, and dedication to customer service. The HOSC Customer Support Team has implemented a variety of processes, and procedures that help to mitigate the potential problems that arise when integrating ground system services for a variety of complex missions and the lessons learned from this experience will lead the future of customer service in the space operations industry

    Der klinische Fall

    Get PDF
    • …
    corecore