2,021 research outputs found

    Effective Treatment of Advanced Colorectal Cancer by Rapamycin and 5-FU/Oxaliplatin Monitored by TIMP-1

    Get PDF
    Aim: The mTOR-inhibitor rapamycin has shown antitumor activity in various tumors. Bedside observations have suggested that rapamycin may be effective as a treatment for colorectal carcinomatosis. Methods: We established an orthotopic syngenic model by transplanting CT26 peritoneal tumors in Balb/C mice and an orthotopic xenograft model by transplanting SW620 peritoneal tumors in nu/nu mice. Expression levels of tissue inhibitor of matrix-metalloproteinases 1 (TIMP-1) in the tumor and serum was determined by enzyme-linked immunosorbent assay. Results: Rapamycin significantly suppressed growth of syngenic and xenografted peritoneal tumors. The effect was similar with intraperitoneal or oral rapamycin administration. Tumor suppression was further enhanced when rapamycin was combined with 5-fluorouracil and/or oxaliplatin. The combination treatment showed no acute toxicity. TIMP-1 serum levels correlated well (CC = 0.75; P < 0.01) with rapamycin treatment. Conclusions: Rapamycin suppressed advanced stage colorectal cancer, even with oral administration. Combining rapamycin with current chemotherapy regimens significantly increased antitumor efficacy without apparent toxicity. The treatment efficacy correlated with serum TIMP-1 levels, suggesting its potential as a surrogate marker in future clinical trial

    Inhibition of SIRT1 Impairs the Accumulation and Transcriptional Activity of HIF-1α Protein under Hypoxic Conditions

    Get PDF
    Sirtuins and hypoxia-inducible transcription factors (HIF) have well-established roles in regulating cellular responses to metabolic and oxidative stress. Recent reports have linked these two protein families by demonstrating that sirtuins can regulate the activity of HIF-1 and HIF-2. Here we investigated the role of SIRT1, a NAD+-dependent deacetylase, in the regulation of HIF-1 activity in hypoxic conditions. Our results show that in hepatocellular carcinoma (HCC) cell lines, hypoxia did not alter SIRT1 mRNA or protein expression, whereas it predictably led to the accumulation of HIF-1α and the up-regulation of its target genes. In hypoxic models in vitro and in in vivo models of systemic hypoxia and xenograft tumor growth, knockdown of SIRT1 protein with shRNA or inhibition of its activity with small molecule inhibitors impaired the accumulation of HIF-1α protein and the transcriptional increase of its target genes. In addition, endogenous SIRT1 and HIF-1α proteins co-immunoprecipitated and loss of SIRT1 activity led to a hyperacetylation of HIF-1α. Taken together, our data suggest that HIF-1α and SIRT1 proteins interact in HCC cells and that HIF-1α is a target of SIRT1 deacetylase activity. Moreover, SIRT1 is necessary for HIF-1α protein accumulation and activation of HIF-1 target genes under hypoxic conditions

    Rapid Identification of Thrombocytopenia-Associated Multiple Organ Failure Using Red Blood Cell Parameters and a Volume/Hemoglobin Concentration Cytogram

    Get PDF
    Thrombocytopenia-associated multiple organ failure (TAMOF) has a high mortality rate when not treated, and early detection of TAMOF is very important diagnostically and therapeutically. We describe herein our experience of early detection of TAMOF, using an automated hematology analyzer. From 498,390 inpatients, we selected 12 patients suspected of having peripheral schistocytosis, based on the results of red blood cell (RBC) parameters and a volume/hemoglobin concentration (V/HC) cytogram. We promptly evaluated whether the individual patients had clinical manifestations and laboratory findings were consistent with TAMOF. Plasma exchanges were then performed for each patient. All 12 patients had TAMOF. The mean values of RBC parameters were significantly higher in all of the patients than with the reference range, however, 3 patients had % RBC fragments within the reference range. The mean value of ADAMTS-13 activity was slightly lower in patients compared with the reference range. Of the 12 patients, remission was obtained in 9 patients (75%) within 4 to 5 weeks using plasma exchanges. Three patients died. An increased percentage of microcytic hyperchromic cells with anisocytosis and anisochromia indicated the presence of schistocytes, making it an excellent screening marker for TAMOF. Identification of TAMOF with RBC parameters and a V/HC cytogram is a facile and rapid method along with an automated hematology analyzer already in use for routine complete blood cell counting test

    Pattern of lateral neck metastases in N0 papillary thyroid carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Indication and extent of lateral prophylactic neck dissection (PLND) in papillary thyroid carcinoma (PTC) is very controversial.</p> <p>Methods</p> <p>We retrospectively analysed 131 patients who underwent thyroidectomy and prophylactic lateral neck dissection from level II to V for PTC.</p> <p>Results</p> <p>140 PLND were performed. The occult lymph node metastases (OLNM) overall rate was 18.6%. The incidence of node involvement was 10% at level III and 6.4% at level IIa. Level IV and level Vb were both concerned by 5.7% OLNM. Only 2.9% of level IIb contained OLNM. None of the level Va ND revealed OLNM.</p> <p>Conclusions</p> <p>OLNM from PTC occurs commonly in level IIa, III, IV and Vb. Incidence in other levels is low. For surgeons that usually perform PLND, we believe that a selective neck dissection of levels IIa, III, IV and Vb in N0 neck PTC is sufficient for the clearance of occult metastases.</p

    The transcription factor FOXM1 regulates the balance between proliferation and aberrant differentiation in head and neck squamous cell carcinoma

    Get PDF
    Sustained expression of FOXM1 is a hallmark of nearly all human cancers including squamous cell carcinomas of the head and neck (HNSCC). HNSCCs partially preserve the epithelial differentiation program, which recapitulates fetal and adult traits of the tissue of tumor origin but is deregulated by genetic alterations and tumor-supporting pathways. Using shRNA-mediated knockdown, we demonstrate a minimal impact of FOXM1 on proliferation and migration of HNSCC cell lines under standard cell culture conditions. However, FOXM1 knockdown in three-dimensional (3D) culture and xenograft tumor models resulted in reduced proliferation, decreased invasion, and a more differentiated-like phenotype, indicating a context-dependent modulation of FOXM1 activity in HNSCC cells. By ectopic overexpression of FOXM1 in HNSCC cell lines, we demonstrate a reduced expression of cutaneous-type keratin K1 and involucrin as a marker of squamous differentiation, supporting the role of FOXM1 in modulation of aberrant differentiation in HNSCC. Thus, our data provide a strong rationale for targeting FOXM1 in HNSCC. © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley &amp; Sons, Ltd

    Gene Expression Modifications by Temperature-Toxicants Interactions in Caenorhabditis elegans

    Get PDF
    Although organophosphorus pesticides (OP) share a common mode of action, there is increased awareness that they elicit a diverse range of gene expression responses. As yet however, there is no clear understanding of these responses and how they interact with ambient environmental conditions. In the present study, we investigated genome-wide gene expression profiles in the nematode Caenorhabditis elegans exposed to two OP, chlorpyrifos and diazinon, in single and combined treatments at different temperatures. Our results show that chlorpyrifos and diazinon induced expression of different genes and that temperature affected the response of detoxification genes to the pesticides. The analysis of transcriptional responses to a combination of chlorpyrifos and diazinon shows interactions between toxicants that affect gene expression. Furthermore, our combined analysis of the transcriptional responses to OP at different temperatures suggests that the combination of OP and high temperatures affect detoxification genes and modified the toxic levels of the pesticides

    Direct Observation of Cooperative Protein Structural Dynamics of Homodimeric Hemoglobin from 100 ps to 10 ms with Pump–Probe X-ray Solution Scattering

    Get PDF
    Proteins serve as molecular machines in performing their biological functions, but the detailed structural transitions are difficult to observe in their native aqueous environments in real time. For example, despite extensive studies, the solution-phase structures of the intermediates along the allosteric pathways for the transitions between the relaxed (R) and tense (T) forms have been elusive. In this work, we employed picosecond X-ray solution scattering and novel structural analysis to track the details of the structural dynamics of wild-type homodimeric hemoglobin (HbI) from the clam Scapharca inaequivalvis and its F97Y mutant over a wide time range from 100 ps to 56.2 ms. From kinetic analysis of the measured time-resolved X-ray solution scattering data, we identified three structurally distinct intermediates (I-1, I-2, and I-3) and their kinetic pathways common for both the wild type and the mutant. The data revealed that the singly liganded and unliganded forms of each intermediate share the same structure, providing direct evidence that the ligand photolysis of only a single subunit induces the same structural change as the complete photolysis of both subunits does. In addition, by applying novel structural analysis to the scattering data, we elucidated the detailed structural changes in the protein, including changes in the heme heme distance, the quaternary rotation angle of subunits, and interfacial water gain/loss. The earliest, R-like I-1 intermediate is generated within 100 ps and transforms to the R-like I-2 intermediate with a time constant of 3.2 +/- 0.2 ns. Subsequently, the late, T-like I-3 intermediate is formed via subunit rotation, a decrease in the heme-heme distance, and substantial gain of interfacial water and exhibits ligation-dependent formation kinetics with time constants of 730 +/- 120 ns for the fully photolyzed form and 5.6 +/- 0.8 mu s for the partially photolyzed form. For the mutant, the overall kinetics are accelerated, and the formation of the T-like I-3 intermediate involves interfacial water loss (instead of water entry) and lacks the contraction of the heme-heme distance, thus underscoring the dramatic effect of the F97Y mutation. The ability to keep track of the detailed movements of the protein in aqueous solution in real time provides new insights into the protein structural dynamics.1149sciescopu
    • 

    corecore