34 research outputs found

    Injection mould tool manufacture in less than five days

    Get PDF
    Using novel rapid prototyping (RP) technology combined with established electroforming tehniques and electro-discharge machining (EDM), injection mould tools have been produced in days rather than weeks. These moulds are manufactured in new silicon-aluminium alloys developed by Osprey Metals, containing 50% or more silicon. The synthesis of these processes shows great potential for use in the rapid tooling sector

    Contactless 3D surface characterization of additive manufactured metallic components using terahertz time-domain spectroscopy

    Get PDF
    Terahertz time-domain spectroscopy has experienced significant progress in imaging, spectroscopy, and quality inspection, e.g., for semiconductor packaging or the automotive industry. Additive manufacturing alloys (also known as alloys for use in 3D printing) have risen in popularity in aerospace and biomedical industries due to the ability to fabricate intricate designs and shapes with high precision using materials with customized mechanical properties. However, these 3D-printed elements need to be polished thereafter, where the surface roughness is inspected using techniques such as the laser scanning microscope. In this study, we demonstrate the use of terahertz time-domain spectroscopy to assess the average roughness profile and height leveling of stainless steel for comparisons against the same parameters acquired using laser scanning microscopy. Our results highlight the potential of the proposed technique to rapidly inspect 3D-printed alloys over large areas, thus providing an attractive modality for assessing surface profiles of AM-manufactured terahertz components in the future

    Automated software for streamlining optimisation of resource planning for an additive manufacturing system

    Get PDF
    Abstract. The use of additive manufacturing (AM) systems in scale production has rapidly increased in recent years. The growing tendency to adopt AM technologies into established manufacturing systems has led to research that considers the optimisation of both process and resource planning. In order to maximise the outputs of such a production process, planning must be conducted rigorously. This paper proposes an automated software tool, called EasyPlan, which streamlines the optimisation of resource planning. The algorithm is developed using LabVIEW and is demonstrated for an AM component from the medical industry. For the evaluation process, parameters such as stock levels, delivery terms and technical charts of the products are provided. A user friendly interface is developed, making EasyPlan versatile to all types of environments

    Automated software for streamlining optimisation of resource planning for an additive manufacturing system

    Get PDF
    Abstract. The use of additive manufacturing (AM) systems in scale production has rapidly increased in recent years. The growing tendency to adopt AM technologies into established manufacturing systems has led to research that considers the optimisation of both process and resource planning. In order to maximise the outputs of such a production process, planning must be conducted rigorously. This paper proposes an automated software tool, called EasyPlan, which streamlines the optimisation of resource planning. The algorithm is developed using LabVIEW and is demonstrated for an AM component from the medical industry. For the evaluation process, parameters such as stock levels, delivery terms and technical charts of the products are provided. A user friendly interface is developed, making EasyPlan versatile to all types of environments

    Determination of the Failure Susceptibility of a Flat Die used in Biomass Pelletizing Machines by means of FEA based Design Exploration

    Get PDF
    This paper focuses on a design analysis of a flat die used in an agricultural biomass pelletizing machine by considering its high pressure loading failure susceptibility. The pellet die is one of the key elements in a pelletizing machine, and the strength of the die plate has an important role on the pellet’s quality and producibility. In fact, higher compression ratio (CR - the ratio of effective length and the internal (press channel) diameter of a die orifice/hole) will provide denser pellets which is a desired phenomenon, however, if the compression pressure is too high or CR is not determined to compensate high pressures, the raw material may block the die and the die may experience deformation failure due to overloading. If the desire is to make high quality pellets with no die failure, optimum flat die hole/orifice design parameters should be used which can provide the best CR for a specific compression pressure. This is the core motivation of this research. In this study, Finite Element Analysis (FEA) based design exploration has been utilised for a sample single hole flat die with various die geometry parameters against various compression pressure values. Following the FEA design exploration undertaken, a response surface analysis (RSA) was carried out and then estimation models (empirical equations), which could be used to calculate parameters of the die hole/orifice against applied compression pressure and failure susceptibility based on structural stress and deformation, was described. The results gained from the RSA has indicated that the estimation models have high R2 values (higher than 98 %) which could be used for adequately predicting failure susceptibility indicators. In addition to this, FEM-based simulation print-outs have provided useful stress distribution visuals on the die against different compression pressure values. Most especially, the study has highlighted that a detailed structural optimisation study may be scheduled in order to obtain die geometry design parameters with a focus on the failure susceptibility

    Composition of Human Skin Microbiota Affects Attractiveness to Malaria Mosquitoes

    Get PDF
    The African malaria mosquito Anopheles gambiae sensu stricto continues to play an important role in malaria transmission, which is aggravated by its high degree of anthropophily, making it among the foremost vectors of this disease. In the current study we set out to unravel the strong association between this mosquito species and human beings, as it is determined by odorant cues derived from the human skin. Microbial communities on the skin play key roles in the production of human body odour. We demonstrate that the composition of the skin microbiota affects the degree of attractiveness of human beings to this mosquito species. Bacterial plate counts and 16S rRNA sequencing revealed that individuals that are highly attractive to An. gambiae s.s. have a significantly higher abundance, but lower diversity of bacteria on their skin than individuals that are poorly attractive. Bacterial genera that are correlated with the relative degree of attractiveness to mosquitoes were identified. The discovery of the connection between skin microbial populations and attractiveness to mosquitoes may lead to the development of new mosquito attractants and personalized methods for protection against vectors of malaria and other infectious diseases

    State of the climate in 2013

    Get PDF
    In 2013, the vast majority of the monitored climate variables reported here maintained trends established in recent decades. ENSO was in a neutral state during the entire year, remaining mostly on the cool side of neutral with modest impacts on regional weather patterns around the world. This follows several years dominated by the effects of either La Niña or El Niño events. According to several independent analyses, 2013 was again among the 10 warmest years on record at the global scale, both at the Earths surface and through the troposphere. Some regions in the Southern Hemisphere had record or near-record high temperatures for the year. Australia observed its hottest year on record, while Argentina and New Zealand reported their second and third hottest years, respectively. In Antarctica, Amundsen-Scott South Pole Station reported its highest annual temperature since records began in 1957. At the opposite pole, the Arctic observed its seventh warmest year since records began in the early 20th century. At 20-m depth, record high temperatures were measured at some permafrost stations on the North Slope of Alaska and in the Brooks Range. In the Northern Hemisphere extratropics, anomalous meridional atmospheric circulation occurred throughout much of the year, leading to marked regional extremes of both temperature and precipitation. Cold temperature anomalies during winter across Eurasia were followed by warm spring temperature anomalies, which were linked to a new record low Eurasian snow cover extent in May. Minimum sea ice extent in the Arctic was the sixth lowest since satellite observations began in 1979. Including 2013, all seven lowest extents on record have occurred in the past seven years. Antarctica, on the other hand, had above-average sea ice extent throughout 2013, with 116 days of new daily high extent records, including a new daily maximum sea ice area of 19.57 million km2 reached on 1 October. ENSO-neutral conditions in the eastern central Pacific Ocean and a negative Pacific decadal oscillation pattern in the North Pacific had the largest impacts on the global sea surface temperature in 2013. The North Pacific reached a historic high temperature in 2013 and on balance the globally-averaged sea surface temperature was among the 10 highest on record. Overall, the salt content in nearsurface ocean waters increased while in intermediate waters it decreased. Global mean sea level continued to rise during 2013, on pace with a trend of 3.2 mm yr-1 over the past two decades. A portion of this trend (0.5 mm yr-1) has been attributed to natural variability associated with the Pacific decadal oscillation as well as to ongoing contributions from the melting of glaciers and ice sheets and ocean warming. Global tropical cyclone frequency during 2013 was slightly above average with a total of 94 storms, although the North Atlantic Basin had its quietest hurricane season since 1994. In the Western North Pacific Basin, Super Typhoon Haiyan, the deadliest tropical cyclone of 2013, had 1-minute sustained winds estimated to be 170 kt (87.5 m s-1) on 7 November, the highest wind speed ever assigned to a tropical cyclone. High storm surge was also associated with Haiyan as it made landfall over the central Philippines, an area where sea level is currently at historic highs, increasing by 200 mm since 1970. In the atmosphere, carbon dioxide, methane, and nitrous oxide all continued to increase in 2013. As in previous years, each of these major greenhouse gases once again reached historic high concentrations. In the Arctic, carbon dioxide and methane increased at the same rate as the global increase. These increases are likely due to export from lower latitudes rather than a consequence of increases in Arctic sources, such as thawing permafrost. At Mauna Loa, Hawaii, for the first time since measurements began in 1958, the daily average mixing ratio of carbon dioxide exceeded 400 ppm on 9 May. The state of these variables, along with dozens of others, and the 2013 climate conditions of regions around the world are discussed in further detail in this 24th edition of the State of the Climate series. © 2014, American Meteorological Society. All rights reserved

    Lancaster Virtual Prototyping Project:(GONW5167/8EUR – M4-07-LANC)

    No full text
    The Lancaster Virtual Prototyping Project was established to assist Lancaster University in developing links with SMEs in the Objective 2 areas of the North West region, to transfer its world-class experience in all aspects of engineering design, manufacture and virtual prototyping, through the use of appropriate design based technologies. The project was delivered by the Lancaster Product Development Unit which was established within the Engineering Department utilising this ERDF funding effectively as a ‘one-stop product development shop’ and exploited the expertise of the Engineering Department in the use of advanced design technologies to the benefit of key regional business sectors, most especially to the automotive, aerospace, general engineering and manufacturing sectors which rely heavily on sub-contracting and supply chains
    corecore