324 research outputs found
Functional specialization of gut CD103+ dendritic cells in the regulation of tissue-selective T cell homing
Gut-associated lymphoid tissue (GALT) dendritic cells (DCs) display a unique ability to generate CCR9+α4β7+ gut-tropic CD8+ effector T cells. We demonstrate efficient induction of CCR9 and α4β7 on CD8+ T cells in mesenteric lymph nodes (MLNs) after oral but not intraperitoneal (i.p.) antigen administration indicating differential targeting of DCs via the oral route. In vitro, lamina propria (LP)–derived DCs were more potent than MLN or Peyer's patch DCs in their ability to generate CCR9+α4β7+ CD8+ T cells. The integrin α chain CD103 (αE) was expressed on almost all LP DCs, a subset of MLN DCs, but on few splenic DCs. CD103+ MLN DCs were reduced in number in CCR7−/− mice and, although CD8+ T cells proliferated in the MLNs of CCR7−/− mice after i.p. but not oral antigen administration, they failed to express CCR9 and had reduced levels of α4β7. Strikingly, although CD103+ and CD103− MLN DCs were equally potent at inducing CD8+ T cell proliferation and IFN-γ production, only CD103+ DCs were capable of generating gut-tropic CD8+ effector T cells in vitro. Collectively, these results demonstrate a unique function for LP-derived CD103+ MLN DCs in the generation of gut-tropic effector T cells
New perspectives in behavioural development: adaptive shaping of behaviour over a lifetime?
Trillmich F, Günther A, Müller C, Reinhold K, Sachser N. New perspectives in behavioural development: adaptive shaping of behaviour over a lifetime? Frontiers in Zoology. 2015;12(Suppl 1): S1
Nephron-specific expression of components of the renin–angiotensin–aldosterone system in the mouse kidney
Introduction: The renin–angiotensin–aldosterone system (RAAS) plays an integral role in the regulation of blood pressure, electrolyte and fluid homeostasis in mammals. The capability of the different nephron segments to form components of the RAAS is only partially known. This study therefore aimed to characterize the nephron-specific expression of RAAS components within the mouse kidney.
Materials and methods: Defined nephron segments of adult C57B/16 mice were microdissected after collagenase digestion. The gene expression of renin, angiotensinogen (AGT), angiotensin-converting enzyme (ACE), angiotensin II receptors 1a (AT1a), 1b (AT1b), and 2 (AT2) was assessed by reverse transcriptase polymerase chain reaction (RT-PCR).
Results: Renin mRNA was present in glomeruli, in proximal tubules, in distal convoluted tubules (DCT) and cortical collecting ducts (CCD). AGT mRNA was found in proximal tubules, descending thin limb of Henle’s loop (dTL) and in the medullary part of the thick ascending limb (mTAL). ACE mRNA was not detectable in microdissected mouse nephron segments. AT1a, AT1b and AT2 mRNA was detected in glomeruli and proximal convoluted tubules.
Conclusions: Our data demonstrate a nephron-specific distribution of RAAS components. All components of the local RAAS – except ACE – are present in proximal convoluted tubules, emphasizing their involvement in sodium and water handling
Meta-analysis of genome-wide association studies from the CHARGE consortium identifies common variants associated with carotid intima media thickness and plaque
Carotid intima media thickness (cIMT) and plaque determined by ultrasonography are established measures of subclinical atherosclerosis that each predicts future cardiovascular disease events. We conducted a meta-analysis of genome-wide association data in 31,211 participants of European ancestry from nine large studies in the setting of the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium. We then sought additional evidence to support our findings among 11,273 individuals using data from seven additional studies. In the combined meta-analysis, we identified three genomic regions associated with common carotid intima media thickness and two different regions associated with the presence of carotid plaque (P < 5 × 10 -8). The associated SNPs mapped in or near genes related to cellular signaling, lipid metabolism and blood pressure homeostasis, and two of the regions were associated with coronary artery disease (P < 0.006) in the Coronary Artery Disease Genome-Wide Replication and Meta-Analysis (CARDIoGRAM) consortium. Our findings may provide new insight into pathways leading to subclinical atherosclerosis and subsequent cardiovascular events
Proteomic analysis of nitrate-dependent acetone degradation by Alicycliphilus denitrificans strain BC
Alicycliphilus denitrificans strain BC grows anaerobically on acetone with nitrate as electron acceptor. Comparative proteomics of cultures of A. denitrificans strain BC grown on either acetone or acetate with nitrate was performed to study the enzymes involved in the acetone degradation pathway. In the proposed acetone degradation pathway, an acetone carboxylase converts acetone to acetoacetate, an AMP-dependent synthetase/ligase converts acetoacetate to acetoacetyl-CoA, and an acetyl-CoA acetyltransferase cleaves acetoacetyl-CoA to two acetyl-CoA. We also found a putative aldehyde dehydrogenase associated with acetone degradation. This enzyme functioned as a -hydroxybutyrate dehydrogenase catalyzing the conversion of surplus acetoacetate to -hydroxybutyrate that may be converted to the energy and carbon storage compound, poly--hydroxybutyrate. Accordingly, we confirmed the formation of poly-?-hydroxybutyrate in acetone-grown cells of strain BC. Our findings provide insight in nitrate-dependent acetone degradation that is activated by carboxylation of acetone. This will aid studies of similar pathways found in other microorganisms degrading acetone with nitrate or sulfate as electron acceptor.This work was supported by the Technology Foundation, the Applied Science Division (STW) of the Netherlands Organization for Scientific Research (NWO) [project 08053]. Additional funding was provided by BE-BASIC [grant F08.004.01 to SA], an ERC grant [project 323009 to AJMS] and the Gravitation grant [project 024.002.002 to AJMS] of the Netherlands Ministry of Education, Culture and Science and NWO
A combined computational and functional approach identifies IGF2BP2 as a driver of chemoresistance in a wide array of pre-clinical models of colorectal cancer
Aim Chemoresistance is a major cause of treatment failure in colorectal cancer (CRC) therapy. In this study, the
impact of the IGF2BP family of RNA-binding proteins on CRC chemoresistance was investigated using in silico, in vitro,
and in vivo approaches.
Methods Gene expression data from a well-characterized cohort and publicly available cross-linking immunoprecipi‑
tation sequencing (CLIP-Seq) data were collected. Resistance to chemotherapeutics was assessed in patient-derived
xenografts (PDXs) and patient-derived organoids (PDOs). Functional studies were performed in 2D and 3D cell culture
models, including proliferation, spheroid growth, and mitochondrial respiration analyses.
Results We identifed IGF2BP2 as the most abundant IGF2BP in primary and metastastatic CRC, correlating with
tumor stage in patient samples and tumor growth in PDXs. IGF2BP2 expression in primary tumor tissue was signif‑
cantly associated with resistance to selumetinib, geftinib, and regorafenib in PDOs and to 5-fuorouracil and oxalipl‑
atin in PDX in vivo. IGF2BP2 knockout (KO) HCT116 cells were more susceptible to regorafenib in 2D and to oxaliplatin,
selumitinib, and nintedanib in 3D cell culture. Further, a bioinformatic analysis using CLIP data suggested stabiliza‑
tion of target transcripts in primary and metastatic tumors. Measurement of oxygen consumption rate (OCR) and
extracellular acidifcation rate (ECAR) revealed a decreased basal OCR and an increase in glycolytic ATP production
rate in IGF2BP2 KO. In addition, real-time reverse transcriptase polymerase chain reaction (qPCR) analysis confrmed
decreased expression of genes of the respiratory chain complex I, complex IV, and the outer mitochondrial membrane
in IGF2BP2 KO cells. Conclusions IGF2BP2 correlates with CRC tumor growth in vivo and promotes chemoresistance by altering mito‑
chondrial respiratory chain metabolism. As a druggable target, IGF2BP2 could be used in future CRC therapy to
overcome CRC chemoresistance
Non-contrast MRI can accurately characterize adnexal masses: a retrospective study
Abstract: Objective: To determine the accuracy of interpretation of a non-contrast MRI protocol in characterizing adnexal masses. Methods and materials: Two hundred ninety-one patients (350 adnexal masses) who underwent gynecological MRI at our institution between the 1st of January 2008 and the 31st of December 2018 were reviewed. A random subset (102 patients with 121 masses) was chosen to evaluate the reproducibility and repeatability of readers’ assessments. Readers evaluated non-contrast MRI scans retrospectively, assigned a 5-point score for the risk of malignancy and gave a specific diagnosis. The reference standard for the diagnosis was histopathology or at least one-year imaging follow-up. Diagnostic accuracy of the non-contrast MRI score was calculated. Inter- and intra-reader agreement was analyzed with Cohen’s kappa statistics. Results: There were 53/350 (15.1%) malignant lesions in the whole cohort and 20/121 (16.5%) malignant lesions in the random subset. Good agreement between readers was found for the non-contrast MRI score (к = 0.73, 95% confidence interval [CI] 0.58–0.86) whilst the intra-reader agreement was excellent (к = 0.81, 95% CI 0.70–0.88). The non-contrast MRI score value of ≥ 4 was associated with malignancy with a sensitivity of 84.9%, a specificity of 95.9%, an accuracy of 94.2% and a positive likelihood ratio of 21 (area under the receiver operating curve 0.93, 95% CI 0.90–0.96). Conclusion: Adnexal mass characterization on MRI without the administration of contrast medium has a high accuracy and excellent inter- and intra-reader agreement. Our results suggest that non-contrast studies may offer a reasonable diagnostic alternative when the administration of intravenous contrast medium is not possible. Key Points: • A non-contrast pelvic MRI protocol may allow the characterization of adnexal masses with high accuracy. • The non-contrast MRI score may be used in clinical practice for differentiating benign from malignant adnexal lesions when the lack of intravenous contrast medium precludes analysis with the O–RADS MRI score
Prior knowledge transfer across transcriptional data sets and technologies using compositional statistics yields new mislabelled ovarian cell line
Here, we describe gene expression compositional assignment (GECA), a powerful, yet simple method based on compositional statistics that can validate the transfer of prior knowledge, such as gene lists, into independent data sets, platforms and technologies. Transcriptional profiling has been used to derive gene lists that stratify patients into prognostic molecular subgroups and assess biomarker performance in the pre-clinical setting. Archived public data sets are an invaluable resource for subsequent in silico validation, though their use can lead to data integration issues. We show that GECA can be used without the need for normalising expression levels between data sets and can outperform rank-based correlation methods. To validate GECA, we demonstrate its success in the cross-platform transfer of gene lists in different domains including: bladder cancer staging, tumour site of origin and mislabelled cell lines. We also show its effectiveness in transferring an epithelial ovarian cancer prognostic gene signature across technologies, from a microarray to a next-generation sequencing setting. In a final case study, we predict the tumour site of origin and histopathology of epithelial ovarian cancer cell lines. In particular, we identify and validate the commonly-used cell line OVCAR-5 as non-ovarian, being gastrointestinal in origin. GECA is available as an open-source R package
- …