33 research outputs found

    Different ataxin-3 amyloid aggregates induce intracellular Ca2+ deregulation by different mechanisms in cerebellar granule cells

    Get PDF
    AbstractThis work aims at elucidating the relation between morphological and physicochemical properties of different ataxin-3 (ATX3) aggregates and their cytotoxicity. We investigated a non-pathological ATX3 form (ATX3Q24), a pathological expanded form (ATX3Q55), and an ATX3 variant truncated at residue 291 lacking the polyQ expansion (ATX3/291Δ). Solubility, morphology and hydrophobic exposure of oligomeric aggregates were characterized. Then we monitored the changes in the intracellular Ca2+ levels and the abnormal Ca2+ signaling resulting from aggregate interaction with cultured rat cerebellar granule cells. ATX3Q55, ATX3/291Δ and, to a lesser extent, ATX3Q24 oligomers displayed similar morphological and physicochemical features and induced qualitatively comparable time-dependent intracellular Ca2+ responses. However, only the pre-fibrillar aggregates of expanded ATX3 (the only variant which forms bundles of mature fibrils) triggered a characteristic Ca2+ response at a later stage that correlated with a larger hydrophobic exposure relative to the two other variants. Cell interaction with early oligomers involved glutamatergic receptors, voltage-gated channels and monosialotetrahexosylganglioside (GM1)-rich membrane domains, whereas cell interaction with more aged ATX3Q55 pre-fibrillar aggregates resulted in membrane disassembly by a mechanism involving only GM1-rich areas. Exposure to ATX3Q55 and ATX3/291Δ aggregates resulted in cell apoptosis, while ATX3Q24 was substantially innocuous. Our findings provide insight into the mechanisms of ATX3 aggregation, aggregate cytotoxicity and calcium level modifications in exposed cerebellar cells

    Pathological ATX3 Expression Induces Cell Perturbations in E. coli as Revealed by Biochemical and Biophysical Investigations

    Get PDF
    Amyloid aggregation of human ataxin-3 (ATX3) is responsible for spinocerebellar ataxia type 3, which belongs to the class of polyglutamine neurodegenerative disorders. It is widely accepted that the formation of toxic oligomeric species is primarily involved in the onset of the disease. For this reason, to understand the mechanisms underlying toxicity, we expressed both a physiological (ATX3-Q24) and a pathological ATX3 variant (ATX3-Q55) in a simplified cellular model, Escherichia coli. It has been observed that ATX3-Q55 expression induces a higher reduction of the cell growth compared to ATX3-Q24, due to the bacteriostatic effect of the toxic oligomeric species. Furthermore, the Fourier transform infrared microspectroscopy investigation, supported by multivariate analysis, made it possible to monitor protein aggregation and the induced cell perturbations in intact cells. In particular, it has been found that the toxic oligomeric species associated with the expression of ATX3-Q55 are responsible for the main spectral changes, ascribable mainly to the cell envelope modifications. A structural alteration of the membrane detected through electron microscopy analysis in the strain expressing the pathological form supports the spectroscopic results

    Protein environment : A crucial triggering factor in josephin domain aggregation: The role of 2,2,2-trifluoroethanol

    Get PDF
    The protein ataxin-3 contains a polyglutamine stretch that triggers amyloid aggregation when it is expanded beyond a critical threshold. This results in the onset of the spinocerebellar ataxia type 3. The protein consists of the globular N-terminal Josephin domain and a disordered C-terminal tail where the polyglutamine stretch is located. Expanded ataxin-3 aggregates via a two-stage mechanism: first, Josephin domain self-association, then polyQ fibrillation. This highlights the intrinsic amyloidogenic potential of Josephin domain. Therefore, much effort has been put into investigating its aggregation mechanism(s). A key issue regards the conformational requirements for triggering amyloid aggregation, as it is believed that, generally, misfolding should precede aggregation. Here, we have assayed the effect of 2,2,2-trifluoroethanol, a co-solvent capable of stabilizing secondary structures, especially α-helices. By combining biophysical methods and molecular dynamics, we demonstrated that both secondary and tertiary JD structures are virtually unchanged in the presence of up to 5% 2,2,2-trifluoroethanol. Despite the preservation of JD structure, 1% of 2,2,2-trifluoroethanol suffices to exacerbate the intrinsic aggregation propensity of this domain, by slightly decreasing its conformational stability. These results indicate that in the case of JD, conformational fluctuations might suffice to promote a transition towards an aggregated state without the need for extensive unfolding, and highlights the important role played by the environment on the aggregation of this globular domain

    A Major Role for Side-Chain Polyglutamine Hydrogen Bonding in Irreversible Ataxin-3 Aggregation

    Get PDF
    The protein ataxin-3 consists of an N-terminal globular Josephin domain (JD) and an unstructured C-terminal region containing a stretch of consecutive glutamines that triggers the neurodegenerative disorder spinocerebellar ataxia type 3, when it is expanded beyond a critical threshold. The disease results from misfolding and aggregation, although the pathway and structure of the aggregation intermediates are not fully understood. In order to provide insight into the mechanism of the process, we monitored the aggregation of a normal (AT3Q24) ataxin-3, an expanded (AT3Q55) ataxin-3, and the JD in isolation. We observed that all of them aggregated, although the latter did so at a much slower rate. Furthermore, the expanded AT3Q55 displayed a substantially different behavior with respect to the two other variants in that at the latest stages of the process it was the only one that did the following: i) lost its reactivity towards an anti-oligomer antibody, ii) generated SDS-insoluble aggregates, iii) gave rise to bundles of elongated fibrils, and iv) displayed two additional bands at 1604 and 1656 cm−1 in FTIR spectroscopy. Although these were previously observed in other aggregated polyglutamine proteins, no one has assigned them unambiguously, yet. By H/D exchange experiments we show for the first time that they can be ascribed to glutamine side-chain hydrogen bonding, which is therefore the hallmark of irreversibly SDS-insoluble aggregated protein. FTIR spectra also showed that main-chain intermolecular hydrogen bonding preceded that of glutamine side-chains, which suggests that the former favors the latter by reorganizing backbone geometry

    HspB8 interacts with BAG3 in a "native-like" conformation forming a complex that displays chaperone-like activity

    No full text
    The HspB8-BAG3 complex plays an important role in the protein quality control acting alone or within multi-components complexes. To clarify the mechanism underlying its activity, in this work we used biochemical and biophysical approaches to study the tendency of both proteins to auto-assemble and to form the complex. Solubility and Thioflavin T assays, Fourier transform infrared spectroscopy and atomic force microscopy analyses clearly showed the tendency of HspB8 to self-assemble at high concentration and to form oligomers in a "native-like" conformation; otherwise, BAG3 aggregates poorly. Noteworthy, also HspB8 and BAG3 associate in a "native-like" conformation, forming a stable complex. Furthermore, the high difference between dissociation constant values of HspB8-HspB8 interaction with respect to the binding to BAG3 obtained by surface plasmon resonance confirms that HspB8 is an obligated partner of BAG3 in vivo. Lastly, both proteins alone or in the complex are able to bind and affect the aggregation of the Josephin domain, the structured domain that triggers the ataxin-3 fibrillation. In particular, the complex displayed higher activity than HspB8 alone. All this considered, we can assert that the two proteins form a stable assembly with chaperone-like activity that could contribute to the physiological role of the complex in vivo

    Interaction of selected divalent metal ions with human ataxin-3 Q36

    No full text
    The mode of interaction of ataxin-3 Q36 (AT-3 Q36) with selected endogenous and exogenous metal ions, namely, Zn^{2+}, Cu^{2+}, Ni^{2+}, and Cd^{2+}, was examined. Metal-ion-induced structural changes of the protein were monitored by fluorescence as well as Fourier transform Raman spectroscopy. We found that the cations tested lead to a decrease in α-helical content and a concurrent increase in β-sheet as well as undefined (β-turn and random-coil) structures. The most evident effect was observed for copper and nickel cations. After titration with these cations, the AT3 Q36 secondary structure content (27% α-helices in the presence of either ion, 31 and 27% β-sheets for Cu^{2+} and Ni^{2+}, respectively) was similar to that observed for the aggregated form of the protein (27% α-helices, 36% β-sheets). Using the 1-anilinonaphthalene-8-sulfonate hydrophobic fluorescence probe, we showed that the presence of the metal ions tested led to the formation of solvent-exposed hydrophobic patches of AT-3 Q36, and that such an effect decreased with increasing ionic radius

    A mutation in polynucleotide phosphorylase from Escherichia coli impairing RNA binding and degradosome stability

    Get PDF
    Polynucleotide phosphorylase (PNPase), a 3′ to 5′ exonuclease encoded by pnp, plays a key role in Escherichia coli RNA decay. The enzyme, made of three identical 711 amino acid subunits, may also be assembled in the RNA degradosome, a heteromultimeric complex involved in RNA degradation. PNPase autogenously regulates its expression by promoting the decay of pnp mRNA, supposedly by binding at the 5′-untranslated leader region of an RNase III-processed form of this transcript. The KH and S1 RNA-binding domains at the C-terminus of the protein (amino acids 552–711) are thought to be involved in pnp mRNA recognition. Here we show that a G454D substitution in E.coli PNPase impairs autogenous regulation whereas it does not affect the catalytic activities of the enzyme. Although the mutation maps outside of the KH and S1 RNA-binding domains, analysis of the mutant protein revealed a defective RNA binding, thus suggesting that other determinants may be involved in PNPase–RNA interactions. The mutation also caused a looser association with the degradosome and an abnormal electrophoretic mobility in native gels. The latter feature suggests an altered structural conformation of PNPase, which may account for the properties of the mutant protein

    A High Sensitivity Biosensor to detect the presence of perfluorinated compounds in environment

    No full text
    A novel surface plasmon resonance (SPR) optical fiber biosensor, able to bind perfluorooctanoate and perfluorooctanesulfonate compounds, is presented. In the first step, an ad hoc antibody compound has been designed, produced and tested by ELISA, then, in the second step, the gold surface of a plastic optical fiber sensor has been derivatizated and functionalized with this new bio-receptor, able to bind target analytes with high affinity and selectivity. The experimental data have shown that the developed SPR optical fiber biosensor makes it possible to detect these compounds. One advantage of this approach stems from the possibility to monitor the perfluorinated compounds in the environment exploiting the remote sensing capability offered by the optical fibers. The measurements were performed in laboratory, also exploiting matrices mimicking the real environment. The limit of detection of the assay was 0.21 ppb, a value that is lower than the maximum residue limit fixed by the European Union regulations
    corecore