135 research outputs found

    Osteoblastic and Vascular Endothelial Niches, Their Control on Normal Hematopoietic Stem Cells, and Their Consequences on the Development of Leukemia

    Get PDF
    Stem cell self-renewal is regulated by intrinsic mechanisms and extrinsic signals mediated via specialized microenvironments called “niches.” The best-characterized stem cell is the hematopoietic stem cell (HSC). Self-renewal and differentiation ability of HSC are regulated by two major elements: endosteal and vascular regulatory elements. The osteoblastic niche localized at the inner surface of the bone cavity might serve as a reservoir for long-term HSC storage in a quiescent state. Whereas the vascular niche, which consists of sinusoidal endothelial cell lining blood vessel, provides an environment for short-term HSC proliferation and differentiation. Both niches act together to maintain hematopoietic homeostasis. In this paper, we provide some principles applying to the hematopoietic niches, which will be useful in the study and understanding of other stem cell niches. We will discuss altered microenvironment signaling leading to myeloid lineage disease. And finally, we will review some data on the development of acute myeloid leukemia from a subpopulation called leukemia-initiating cells (LIC), and we will discuss on the emerging evidences supporting the influence of the microenvironment on chemotherapy resistance

    Discovery of new therapeutic targets in ovarian cancer through identifying significantly non-mutated genes

    Get PDF
    Background: Mutated and non-mutated genes interact to drive cancer growth and metastasis. While research has focused on understanding the impact of mutated genes on cancer biology, understanding non-mutated genes that are essential to tumor development could lead to new therapeutic strategies. The recent advent of high-throughput whole genome sequencing being applied to many different samples has made it possible to calculate if genes are significantly non-mutated in a specific cancer patient cohort. Methods: We carried out random mutagenesis simulations of the human genome approximating the regions sequenced in the publicly available Cancer Growth Atlas Project for ovarian cancer (TCGA-OV). Simulated mutations were compared to the observed mutations in the TCGA-OV cohort and genes with the largest deviations from simulation were identified. Pathway analysis was performed on the non-mutated genes to better understand their biological function. We then compared gene expression, methylation and copy number distributions of non-mutated and mutated genes in cell lines and patient data from the TCGA-OV project. To directly test if non-mutated genes can affect cell proliferation, we carried out proof-of-concept RNAi silencing experiments of a panel of nine selected non-mutated genes in three ovarian cancer cell lines and one primary ovarian epithelial cell line. Results: We identified a set of genes that were mutated less than expected (non-mutated genes) and mutated more than expected (mutated genes). Pathway analysis revealed that non-mutated genes interact in cancer associated pathways. We found that non-mutated genes are expressed significantly more than mutated genes while also having lower methylation and higher copy number states indicating that they could be functionally important. RNAi silencing of the panel of non-mutated genes resulted in a greater significant reduction of cell viability in the cancer cell lines than in the non-cancer cell line. Finally, as a test case, silencing ANKLE2, a significantly non-mutated gene, affected the morphology, reduced migration, and increased the chemotherapeutic response of SKOV3 cells. Conclusion: We show that we can identify significantly non-mutated genes in a large ovarian cancer cohort that are well-expressed in patient and cell line data and whose RNAi-induced silencing reduces viability in three ovarian cancer cell lines. Targeting non-mutated genes that are important for tumor growth and metastasis is a promising approach to expand cancer therapeutic options.We would like to thank Weill Cornell Medicine in Qatar (WCM-Q) and the Qatar National Leadership Program (QNLP) for research support. We would also like to thank the WCM-Q Advanced Computing Division for computing time and software support. Finally, we would like to thank colleagues and reviewers for experimental support and critical discussions. This study was made possible by JSREP grant 4-011-1-003 from the Qatar National Research Fund (a member of Qatar Foundation) and the QF Leadership program. The statements made herein are solely the responsibility of the author[s]. The funders had no role in the design of the study or in the collection, analysis, and interpretation of data and in writing the manuscript.Scopu

    MicroRNA-200, associated with metastatic breast cancer, promotes traits of mammary luminal progenitor cells

    Get PDF
    MicroRNAs are critical regulators of gene networks in normal and abnormal biological processes. Focusing on invasive ductal breast cancer (IDC), we have found dysregulated expression in tumor samples of several microRNAs, including the miR-200 family, along progression from primary tumors to distant metastases, further reflected in higher blood levels of miR-200b and miR-7 in IDC patients with regional or distant metastases relative to patients with primary node-negative tumors. Forced expression of miR-200s in MCF10CA1h mammary cells induced an enhanced epithelial program, aldehyde dehydrogenase (ALDH) activity, mammosphere growth and ability to form branched tubuloalveolar structures while promoting orthotopic tumor growth and lung colonization in vivo. MiR-200s also induced the constitutive activation of the PI3K-Akt signaling through downregulation of PTEN, and the enhanced mammosphere growth and ALDH activity induced in MCF10CA1h cells by miR-200s required the activation of this signaling pathway. Interestingly, the morphology of tumors formed in vivo by cells expressing miR-200s was reminiscent of metaplastic breast cancer (MBC). Indeed, the epithelial components of MBC samples expressed significantly higher levels of miR-200s than their mesenchymal components and displayed a marker profile compatible with luminal progenitor cells. We propose that microRNAs of the miR-200 family promote traits of highly proliferative breast luminal progenitor cells, thereby exacerbating the growth and metastatic properties of transformed mammary epithelial cells

    Signal transducer and activator of transcription 3 (Stat3) suppresses stat1/interferon signaling pathway and inflammation in senescent preadipocytes

    Get PDF
    © 2021 by the authors. Licensee MDPI, Basel, Switzerland. Obesity promotes premature aging and dysfunction of white adipose tissue (WAT) through the accumulation of cellular senescence. The senescent cells burden in WAT has been linked to inflammation, insulin‐resistance (IR), and type 2 diabetes (T2D). There is limited knowledge about molecular mechanisms that sustain inflammation in obese states. Here, we describe a robust and physiologically relevant in vitro system to trigger senescence in mouse 3T3‐L1 preadipocytes. By employing transcriptomics analyses, we discovered up‐regulation of key pro‐inflammatory molecules and activation of interferon/signal transducer and activator of transcription (STAT)1/3 signaling in senescent preadipocytes, and expression of downstream targets was induced in epididymal WAT of obese mice, and obese human adipose tissue. To test the relevance of STAT1/3 signaling to preadipocyte senescence, we used Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR associated protein 9 (CRISPR/Cas9) technology to delete STAT1/3 and discovered that STAT1 promoted growth arrest and cooperated with cyclic Guanosine Monophosphate‐Adenosine Monophosphate (GMP‐AMP) synthase‐stimulator of interferon genes (cGAS‐STING) to drive the expression of interferon β (IFNβ), C‐X‐C motif chemokine ligand 10 (CXCL10), and interferon signaling‐related genes. In contrast, we discovered that STAT3 was a negative regulator of STAT1/cGAS‐STING signaling—it suppressed senescence and inflammation. These data provide insights into how STAT1/STAT3 signaling coordinates senescence and inflammation through functional interactions with the cGAS/STING pathway

    NKX2-5 regulates human cardiomyogenesis via a HEY2 dependent transcriptional network.

    Get PDF
    Congenital heart defects can be caused by mutations in genes that guide cardiac lineage formation. Here, we show deletion of NKX2-5, a critical component of the cardiac gene regulatory network, in human embryonic stem cells (hESCs), results in impaired cardiomyogenesis, failure to activate VCAM1 and to downregulate the progenitor marker PDGFRα. Furthermore, NKX2-5 null cardiomyocytes have abnormal physiology, with asynchronous contractions and altered action potentials. Molecular profiling and genetic rescue experiments demonstrate that the bHLH protein HEY2 is a key mediator of NKX2-5 function during human cardiomyogenesis. These findings identify HEY2 as a novel component of the NKX2-5 cardiac transcriptional network, providing tangible evidence that hESC models can decipher the complex pathways that regulate early stage human heart development. These data provide a human context for the evaluation of pathogenic mutations in congenital heart disease.Nat Commun 2018 Apr 10; 9(1):1373

    MicroRNA-200, associated with metastatic breast cancer, promotes traits of mammary luminal progenitor cells

    Get PDF
    MicroRNAs are critical regulators of gene networks in normal and abnormal biological processes. Focusing on invasive ductal breast cancer (IDC), we have found dysregulated expression in tumor samples of several microRNAs, including the miR-200 family, along progression from primary tumors to distant metastases, further reflected in higher blood levels of miR-200b and miR-7 in IDC patients with regional or distant metastases relative to patients with primary node-negative tumors. Forced expression of miR-200s in MCF10CA1h mammary cells induced an enhanced epithelial program, aldehyde dehydrogenase (ALDH) activity, mammosphere growth and ability to form branched tubuloalveolar structures while promoting orthotopic tumor growth and lung colonization in vivo. MiR-200s also induced the constitutive activation of the PI3K-Akt signaling through downregulation of PTEN, and the enhanced mammosphere growth and ALDH activity induced in MCF10CA1h cells by miR-200s required the activation of this signaling pathway. Interestingly, the morphology of tumors formed in vivo by cells expressing miR-200s was reminiscent of metaplastic breast cancer (MBC). Indeed, the epithelial components of MBC samples expressed significantly higher levels of miR-200s than their mesenchymal components and displayed a marker profile compatible with luminal progenitor cells. We propose that microRNAs of the miR-200 family promote traits of highly proliferative breast luminal progenitor cells, thereby exacerbating the growth and metastatic properties of transformed mammary epithelial cells

    Lymph Node Assessment in Endometrial Cancer: Towards Personalized Medicine

    No full text
    Endometrial cancer (EC) is the most common malignancy of the female reproductive tract and is increasing in incidence. Lymphovascular invasion and lymph node (LN) status are strong predictive factors of recurrence. Therefore, the determination of the nodal status of patients is mandatory to optimally tailor adjuvant therapies and reduce local and distant recurrences. Imaging modalities do not yet allow accurate lymph node staging; thus pelvic and aortic lymphadenectomies remain standard staging procedures. The clinical data accumulated recently allow us to define low- and high-risk patients based on pre- or peroperative findings that will allow the clinician to stratify the patients for their need of lymphadenectomies. More recently, several groups have been introducing sentinel node mapping with promising results as an alternative to complete lymphadenectomy. Finally, the use of peroperative algorithm for risk determination could improve patient's staging with a reduction of lymphadenectomy-related morbidity

    Les altérations génétiques et transcriptomiques des métastases du cancer de l'ovaire.

    No full text
    Le cancer de l ovaire est le cancer gynécologique avec la plus grande mortalité due à un diagnostique tardif au stade de maladie extensive péritonéale. Malgré les progrès de la chirurgie radicale et de la chimiothérapie les récurrences abdominales demeurent la cause la plus fréquente de mortalité. Il existe peu d études de la maladie métastatique péritonéale. Notre hypothèse de travail est que les différences entre la maladie métastatique et la tumeur primaire sont primordiales dans la survenue d une maladie résiduelle ou récurrente. Nous avons utilisé une approche exhaustive comprenant des études du transcriptome, des variations du nombre de copie (VNC) et des sequençages des exomes pour caractériser les différences entre lésions primaires, métastases péritonéales et métastases lymphatiques.Résultats: Notre étude démontre que les VNC varient de façon significative entre la tumeur primaire et la métastase peritonéale. Les différences d expressions géniques bien que mineures permettent de retrouver les voies de signalisation primordiales pour le développement des métastases. Le séquençage des exomes montre très peu de différences en terme de polymorphisme. Par ailleurs la majorité des polymorphismes présents dans les métastases se retrouvent à une faible fréquence dans la tumeur primaire de façon concordante avec la théorie clonale. Conclusion: L ensemble des résultats montre la possibilité d une origine clonale de la maladie métastatique des cancers de l ovaire comportant la majorité des anomalies au niveau des variations du nombre de copie. L intégration de ces données permettrait d optimiser les thérapeutiques ciblées.Ovarian cancer is the most deadly gynecological cancer. The high rate of mortality is due to the large tumor burden with extensive metastatic lesion of the abdominal cavity. There are few studies on genetic alterations and their consequences in peritoneal metastatic tumors when compared to their matched ovarian primary tumors. Our hypothesis is that differences between the metastatic and primary lesions might be the cause of residual disease and, most importantly may have a role in post-chemotherapeutic recurrences. Methods: We conducted integrated genomics analysis on matched primary and metastatic tumors from 9 patients. In the papers presented here we analyze genome-wide Copy Number Variations (CNVs) using SNP Arrays targeting peritoneal metastasis differences, Gene expression differences using Microarrays also targeting peritoneal metastasis differences, and for some patients, Single Nucleotide Polymorphisms (SNPs) in genes through Exome sequencing.Results: Here we show that CNVs vary significantly between primary and metastatic tumors and include genes that have been considered potential chemotherapeutic targets based on primary tumor only data. Gene expression differences, while minor, showed highly statistically significant enrichment of genes in ovarian cancer critical pathways. In agreement with findings in other cancers, exome sequencing data revealed very few SNP differences of which most metastasis enriched SNPs were present at very low levels in the primary tumor. The results presented here should allow better design of therapies to target residual ovarian cancer disease.PARIS11-SCD-Bib. électronique (914719901) / SudocSudocFranceF

    Implication of Microenvironment on the Onset of Metastasis & Initiation of Residual Disease in Breast Adenocarcinoma

    No full text
    Le cancer du sein est le cancer le plus fréquemment diagnostiqué et la deuxième cause de décès par cancer dans les pays développé. Récemment le rôle du microenvironnement a été mis en évidence dans l oncogenèse et la progression tumorale. Plusieurs études ont montré que le microenvironnement tumoral est un élément dynamique en constant dialogue avec les cellules tumorales. Parmi les éléments du microenvironnement les cellules endothéliales jouent un rôle particulier. Effectivement ces cellules constituent la paroi des vaisseaux et permettent l acheminement des nutriments et de l oxygène vers la tumeur. Ainsi ces dernières années des thérapies visant a détruire les vaisseaux sanguins ont vu le jour mais n ont pas permis d atteindre les progrès thérapeutiques escomptés. Notre groupe ainsi que d autres ont mis en évidence des rôles des cellules endothéliales indépendant de la perfusion tumorale. Dans ce travail de thèse nous avons caractérisé l interaction entre cellules endothéliales et tumorales et mis en évidence le rôle pro-tumoral de la niche vasculaire. Nous avons tout d abord pu montrer en utilisant une stratégie de souris transgénique où nous annulons l expression de Jag1 des cellules endothéliales la réduction drastique de l occurrence des métastases. Nous avons pu montrer que cela n est pas dépendant de la perfusion tumorale mais dépend de la modification de nombreux gènes pro-métastatiques dont Id1 dans les cellules tumorales par les cellules endothéliales. Parallèlement nous avons montré que le dialogue entre cellules tumorales et endothéliales induit une transition mésenchymateuse des cellules endothéliales avec pour conséquence une augmentation de leur survie ainsi que de leur migration et de leur capacité angiocrine.Ainsi nous avons montré comment le dialogue entre cellules tumorales et endothéliales induit une modification du phénotype tumoral et endothéliale et le rôle de la voie Notch dans ce dialogue. Notre travail suggère la possibilité de moduler l agressivité tumorale en interrompant le dialogue entre cellules endothéliales et tumorales.Breast cancer is a heterogeneous disease, which is characterized by distinct morphological features and clinical behaviors and is the most commonly diagnosed cancer among women in the United States and worldwide and the second cause of cancer-related mortality in women. Several years of investigation have demonstrated that tumor initiation, progression and metastasis are closely regulated by the adjacent non-neoplastic tissues that are collectively referred to as tumor microenvironment (stroma). The components of tumor stroma such as mesenchymal stem cells have been shown to enhance cancer stem cell population in breast tumor. Also, the endothelial cells (ECs) conventional role in tumor angiogenesis is crucial in determining the tumor fate as microscopic and asymptomatic versus aggressive. This outstanding characteristic of ECs has set them as promising targets in cancer therapy. However, failure of anti-angiogenic therapies despite vessel disruption suggests the blood flow-independent ability of ECs to facilitate tumor growth. In this study, we show that ECs promoted breast cancer cell self-renewal, stemness, migratory characteristic and lung metastasis through Jagged1/Notch dependent Id1 modulation. ECs with Jag1 knock down (ECsJag1-) failed to sustain breast cancer cell proliferation and stemness in vitro and during xenografted tumor growth. Furthermore, we established a breast tumor mouse model with EC specific Jag1 mutation, by crossing the MMTV-PyMT mice with Cdh5-Cre+/-Jag1loxP/loxP mice. It demonstrated significant decrease in primary tumor growth and dramatic reduction in lung metastasis in Cdh5-Cre+/-Jag1loxP/loxPPyMT+ mice. Transcriptome sequencing analysis of the sorted primary tumor cells identified Notch downstream targets, specifically, Id1, which was reported to be essential for lung metastasis of breast tumors. Additionally, we were interested in determining the mechanisms that derive the activation of ECs toward supporting tumor growth and expansion. Previous studies have shown that ECs show tremendous degree of plasticity when placed under different conditions. Here, we showed that ECs show EndMT phenotypes upon having contact with tumor cells. Interestingly, the EndMT transforms the ECs into activated entities with increased proliferation, migration and angiogenesis properties. Our results demonstrated that the EndMT was reversible and dependent on EC-tumor cell contacts. Moreover, we were able to show that the tumor-induced EndMT in ECs is synergistically regulated by TGFb and notch signaling pathways. Overall, our findings implicate the significance of endothelial-tumor cells perfusion-independent interaction in cancer progression, stemness, and metastasis. Besides, this study might have determined novel targets in combating cancer in a more effective way.PARIS11-SCD-Bib. électronique (914719901) / SudocSudocFranceF
    corecore